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GENERAL INTRODUCTION 

Although the commercial production of gamma-linolenic-rich oil by 

fermentation with a mold was reported in England and Japan, production 

of single-cell oil is marginal economically. 

Since its isolation in 1977, Aoiotrichum curvatum has attracted 

attention from several groups, and has been used in biochemical, 

physiological and microbiological studies as well as studies of 

feasibility of industrial production of the yeast oil. 

Triglyceride assembly is an important step because glyceride 

structure is important in determining oil quality. Nevertheless, only a 

few studies have been done on triglyceride biosynthesis by oleaginous 

yeasts. 

Previous studies indicated that A. curvatum incorporated the acyl 

group of substrate oils into its triglycerides; therefore, growing the 

yeast on various lipids can provide an excellent means of exploring 

triglyceride assembly. The yeast also is known to have the acyl 

composition and glyceride structure typical of vegetable oil; therefore 

the insights gained from such studies may also be applicable to oil seed 

plants for which such studies are more difficult. 

One possible way to provide economic viability to single-cell oil 

production might be to transfer the ability to make unusual fatty acids 

of economic importance to oleaginous yeast. The ability of A. curvatum 

to tolerate and metabolize such fatty acids can be tested by growing the 

yeast on the substrate containing those fatty acids. Those studies may 

also be applicable to oilseed plants as well. 
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In this study, A. curvatum was grown on various lipids such as pure 

or mixed fatty acids or triglycerides; the growth and lipid accumulation 

by the yeast, and the fatty acid composition and distribution of fatty 

acyl groups in its triglycerides were analyzed to investigate 

triglyceride assembly by the yeast. 

Explanation of dissertation format 

This dissertation follows the alternate format, and consists of two 

major parts. The first part, Triacylglycerol assembly from lipid 

substrates by Aoiotrichum curvatum ATCC 20509, has been submitted as a 

chapter of the book tentatively titled "Single Cell Oil." The second 

part includes further investigation of triacylglycerol assembly with the 

same yeast and has been prepared for a professional journal. The format 

of the two manuscripts followed those for the book and journal, 

respectively. The two papers are preceded by a General Introduction and 

a Literature Review and followed by a General Summary. Literature cited 

in the entire dissertation are listed in alphabetical order of authors' 

name and follow the General Summary. 
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LIIERAIXJRE REVIEW 

Definition of oleaginous microorganism 

Microorganisms that can accumulate a considerable portion of their 

biomass as lipid are called oleaginous. In defining oleaginous fungi, 

Weete (1980) used a 20% minimum for the proportion of lipid accumulated 

under appropriate growth conditions. It is not easy to define "under 

appropriate conditions," because environmental and nutritional 

conditions influence lipid accumulation in microorganisms (Rattray, 

1985; Weete, 1980). 

Ratledge proposed 25% lipid accumulation as the arbitrary line for 

applying the term "oleaginous." The 25% level was thought to be the 

dividing line in determining commercial exploitation of the organism. 

Also, this level limits the number of organisms to be considered, 

because many organisms have 20 to .25% lipid in their cells (Ratledge, 

1982). 

Studies on biochemical differences in oleaginous and nonoleaginous 

yeasts have suggested biochemical definitions of the term "oleaginous." 

A number of studies suggest that the enzyme adenosine triphosphate 

(ATP): citrate lyase which cleaves citrate into acetyl coenzyme A (CoA) 

and oxaloacetate occurs in the cytoplasm of all oleaginous yeasts and is 

the key enzyme in oleaginicity. The acetyl CoA is used for fatty acid 

synthesis, and oxaloacetate is converted to pyruvate via malate, 

producing nicotinamide adenine dinucleotide phosphate (NADPH). The 

pyruvate then returns to the mitochondria where it is coverted to 
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citrate that can again migrate to the cytoplasm and repeat the cycle. 

NADPH is also needed for fatty acid synthesis (Botham and Ratledge, 

1979; Boulton and Ratledge, 1981). ATPrcitrate lyase has been found in 

various oleaginous yeasts but not in nonoleaginous yeasts except one 

nonoleaginous strain of Rhodotorula alutinis <Botham and Ratledge, 

1979). Therefore, the presence of the enzyme appears to be an important 

biochemical criterion of oleaginicity, even if the specific activity of 

the enzyme does not correlate with the amount of lipid accumulated by 

the yeast (Evans et al., 1981; Evans et al., 1983a,b; Ratledge, 1986; 

Ratledge and Gilbert, 1985). 

Studies about mechanism of oleaginicity 

A great deal of work has been done to understand how an oleaginous 

organism can accumulate lipid. As a result, the biochemical pathway and 

mechanism for fatty acid synthesis in oleaginous yeasts are quite well 

elucidated; however, many questions about regulation of the process 

remain unsolved. 

In early studies, some hypotheses for oleaginicity were proposed, 

and these theories were tested, mostly by comparison of the biochemical 

features of oleaginous and nonoleaginous yeasts. Apiotrichum curvatum 

was used as an excellent model oleaginous yeast. The hypotheses 

included differences in the control of sugar uptake, regulation of 

acetyl CoA carboxylase, lipid turnover rate, and the regulatory role of 

adenine nucleotides. These hypotheses proved inadequate, but it was 

discovered that acetyl CoA carboxylase from oleaginous yeasts but not 



www.manaraa.com

5 

from nonoleaginous yeasts was activated by citrate (Whitworth and 

Ratledge, 1975; Botham and Ratledge, 1978; Botham and Ratledge, 1979). 

Other important findings that led to the presently accepted mechanism 

for oleaginicity were; 

1. the presence of an active ATP;citrate lyase in oleaginous yeasts; 

2. a low concentration of adenosine monophosphate (AMP) in oleaginous 

yeasts under nitrogen-limited conditions; 

3. the strong dependence of isocitrate dehydrogenase from oleaginous 

yeasts on AMP (Botham and Ratledge, 1979; Boulton and Ratledge, 

1981a; Boulton and Ratledge, 1981b; Evans and Ratledge, 1983b). 

After the current mechanism of oleaginicity was proposed, studies 

followed to prove the hypothesis in detail and to elucidate the control 

of the process. In 1984, Evans and Ratledge discovered that 

Rhodosporidium toruloides CBS14 increased its lipid content from 18% to 

52% when the nitrogen source was switched from ammonium chloride to 

glutamate or urea. The yeast provided a good model for the regulation 

of lipid synthesis by one factor, the nitrogen source. 

The metabolic steps that have been studied for possible regulatory 

roles include: (i) the build-up of ATP and depletion of AMP (Botham and 

Ratledge,1979); (ii) inactivation of mitochondrial nicotinamide adenine 

dinucleotide (NAD+); isocitrate dehydrogenase (Evans and Ratledge, 

1985b); (iii) transport of citrate across the mitochondrial membrane 

(Evans et al., 1981; Evans et al., 1983a,b); (vi) enzymatic reaction of 

ATP;citrate lyase (Boulton and Ratledge,1981a; Evans and Ratledge, 

1983b); (V) activation of AMP deaminase and malic enzyme (Evans and 



www.manaraa.com

6 

Ratledge, 1985a). Although much has been revealed about the factors 

that affect each possible regulatory step, it remains unclear how the 

whole process of lipid biosynthesis is coordinated, and why yeasts can 

accumulate different amount of lipid under the same growth conditions. 

Figure 1 shows the linkage between intermediary metabolism and 

fatty acid biosynthesis in oleaginous fungi. When the nitrogen supply 

in the medium is exhausted, the activity of AMP deaminase increases 

greatly, and the enzyme, which catalyses the reaction AMP -> inosine 

monophosphate (IMP) + NH^, creates a low intracellular AMP concentration. 

At the same time the ATP level in the cell increases as the synthesis of 

proteins and nucleic acid are impeded by lack of nitrogen (Evans and 

Ratledge, 1985a). However, it is not clear how AMP deaminase becomes 

activated by depletion of nitrogen (Ratledge, 1987). NAD*:isocitrate 

dehydrogenase in oleaginous yeasts is strongly dependent on the AMP 

concentration for its activity, and it is inhibited strongly by ATP. 

Thus, when the mitochondrial enzyme is blocked, citrate accumulates in 

the mitochondria . (Evans et al., 1983a; Botham and Ratledge, 1985). 

The accumulated citrate is transported out of the mitochondrion in 

exchange with malate by citrate-malate translocase (Evans et al., 1983b). 

Production of malate through the citric acid cycle is blocked 

by deactivation of NAD*:isocitrate dehydrogenase. However, malate can be 

created from pyruvate via oxaloacetate. The reduction of oxaloacetate 

is effected by mitochondrial malate dehydrogenase (Ratledge, 1987). The 

malate is believed to move out of the mitochondrion in exchange for 

pyruvate by a pyruvate-malate translocase system. The pyruvate supply 
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Figure 1. Intermediary metabolism as linked to fatty acid biosynthesis in 
oleaginous microorganisms. Mitochondrial transport process: a, 
b, c, interlinked pyruvate-malate translocase systems; d, 
citrate-raalate translocase. Enzymes: AAC, acetyl CoA 
carboxylase; AC, aconitase; ACL, ATP: citrate lyase; CS, citrate 
synthase; FAS, fatty acid synthetase complex; ID, isocitrate 
dehydrogenase; MD^, malate dehydrogenase (cytosolic); MD^, 
malate dehydrogenase (mitochondrial); ME, malic enzyme; PC, 
pyruvate carboxylase; PD, pyruvate dehydrogenase; PFK, 
phosphofructo-kinase; PK, pyruvate kinase (Ratledge, 1987) 
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from sugar continues unabated because the two enzymes regulating 

glycolysis, phosphofructokinase and pyruvate kinase, are fully active or 

at least active enough during lipid synthesis (Evans and Ratledge, 1984; 

Evans and Ratledge, 1985c). 

The citrate transferred into the cytoplasm is cleaved into acetyl 

CoA and oxaloacetate, providing acetyl CoA for fatty acid biosynthesis 

(Botham and Ratledge, 1979; Boulton and Ratledge, 1981a; Boulton and 

Ratledge, 1981b; Evans and Ratledge, 1983b). The oxaloacetate in the 

cytoplasm is converted to malate by cytosolic malate dehydrogenase. A 

part of the cytosolic malate is transported back to the mitochondrion in 

exchange for citrate, and extra malate is converted to pyruvate by malic 

enzyme, which can simultaneously produce the NADPH needed for fatty acid 

synthesis (Evans and Ratledge, 1985a). 

Commercial potential of single cell oil production 

It was in the early 1870s that an ergot fungus was observed to 

contain'30% of its biomass as fat. During the following half century, a 

number of microorganisms, mostly fungi, that accumulated significant 

amounts of lipid were isolated and charaterized (Woodbine, 1959). 

The two world wars provided a great impetus for research in Germany 

on the production of oil from microbial sources, but this did not result 

in commercially successful production (Ratledge, 1984). In 1959, 

Woodbine (1959) reviewed the potential for commercial production of 

microbial oil. However, it has been only in the last ten years that 

interest in microbial oil has resurfaced, and extensive research has 
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been performed. The renewed interest in oleaginous fermentations 

appears to be indebted to successful commercialization of single cell 

protein production as well as realization of the need for oils from 

alternative sources by the painful experiences of the petroleum crisis 

in 1970s (Ratledge, 1982). In 1982, Ratledge compared the research of 

microbial lipid to "insurance" against possible soaring prices for 

conventional fats and oils. He also concluded that "events far outside 

the realms of the fermentation laboratory" would decide the feasibility 

of commercial-scale microbial lipid production (Ratledge, 1982). 

Bacteria generally do not accumulate much lipid, and their lipid 

usually is mainly phospholipid and glycolipid. Some bacteria accumulate 

waxes as well as neutral lipids, and bacterial lipid from some genera is 

suspected of being toxic or allergenic. Various unusual fatty acids 

such as hydroxy, branched-chain, and cyclopropanoid fatty acids have 

been reported from bacterial oil, however, the polyunsaturated fatty 

acids typically found in vegetable oils usually were not identified 

(Waywan et al., 1984). 

Microalgae have attracted attention because of the exceptionally 

great photosynthetic productivity of their cell mass; however, their 

lipid content is generally only 15-20%, except for some species that 

grow very slowly. Also, algae contain very high proportions of 

nonneutral oil, and refining their oils would need complex and expensive 

downstream processes (Shifrin, 1984). 

Many fungi are able to accumlate more than 60% of their biomass as 

lipid, of which 80-90% is triglyceride. Fungal lipids are similar to 
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vegetable oils, being composed of palmitic, stearic, oleic, linoleic and 

linolenic acids (Glatz et al., 1984). Generally fungi, especially 

yeasts, are regarded as the most likely candidates for edible oil 

production because the technology for large-scale production of single 

cell protein (SCP) can be adapted to oil production, and yeasts 

generally are accepted in human food (Murali et al., 1987). Among the 

yeasts studied, A. curvatum has become the most extensively investigated 

for commercial potential because of its ability to utilize cheese whey, 

a byproduct of cheese making (Moon and Hammond, 1978). 

The more serious attempts to achieve commercial production of 

microbial oils have been done in European countries and New Zealand, 

where indigenous oil sources are limited but supplies of relatively low-

priced carbon sources are available (Moreton, 1987; Stobart and Stymne, 

1987; Floetenmeyer et al., 1985; Davies, 1987). 

A basic question in pursuing the commercial production of microbial 

oil is whether such oil can compete with typical agriculturally-produced 

oils and, if this is not the case, are there circumstances where 

microbial oil could compete in the oil market. Two papers suggest that 

the microbial oil would have to be worth over $5,000/ton to be produced 

commercially in European countries (Moreton, 1987; Sinden, 1987). This 

price was about 10 times greater than the current price of soybean oil. 

This calculation indicated that microbial oil would have to find markets 

comparable to expensive specialty oils such as cocoa butter. 

Production costs, of course, can vary with costs of raw materials, 

equipment and labor. According to Floetenmeyer et al. (1985), the 
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economically feasible cost in the United States, when whey permeate is 

utilized as a substrate in a continuous culture of A. curvatum 

(Floetenmeyer et al., 1985) would be $680/ton. However, this cost does 

not include the downstream processes of extraction and refining. 

The Department of Scientific and Industrial Research of New Zealand 

has been actively pursuing the scale-up of single cell oil processes 

because of New Zealand's limited domestic vegetable oil supply and 

geographical situation. Davies has provided extensive information about 

the industrial-scale production of yeast oil based on studies in a 500-L 

pilot-scale fermentor with A. curvatum on a whey substrate (Davies, 

1987). Among the various methods examined for downstream processing, 

cell concentration with a Sharpies decanter and extraction of the spray-

dried yeast with hexane (20% w/w) in a bead mill were the best options. 

To be economically attractive, the price of product yeast oil should be 

more than $l,000/ton, according to his assessment. Table 1 shows the 

current prices of some vegetable oils. Further process development and 

optimization of downstream processes were reported; however,, commercial 

production of the process has not been realized yet (Davies, 1991). 

The first commercial production of microbial oil was achieved in 

1987. A British company announced the production of an oil rich in 

gatnma-linolenic acid by fermentation with Mueor •iavanicua. A glucose-

based defined medium was used to carry out the fermentation in 220-m^ 

fermentors. The oil was extracted using organic solvents and used as a 

substitute for evening primrose oil, which contains 8-10% gamma-

linolenic acid and is sold at $56,000/ton in England (Sinden, 1987). 
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Table 1. Wholesale prices of various agricultural oils in the United 
States (June, 1991)® 

Item Price ($/ton) 

Castor oil 805 

Cocoa butter 4500 

Coconut oil, crude 478 

Corn oil 653 

Cottonseed oil, crude 448 

Linseed oil, raw 794 

Palm oil 428 

Peanut oil, crude 932 

Rapeseed oil 419 

Safflower oil 1080 

Soybean oil, crude 433 

Sunflower oil 523 

Tung oil 1356 

®From "Oil Crops: Situation and Outlook Yearbook" (1991, USDA)• 

Another commercial production of gamma-linolenic-rich oil by 

fermentation with Mortierella species was reported in Japan (Ratledge, 

1987). However, the market for specialty oils such as gamma-linolenic-
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rich oil is small and its future is unclear. 

Studies on A. curvatum 

Since isolation of A. curvatum in 1977, this oleaginous yeast has 

been investigated by several groups. In this section, the studies of 

several of these groups will be reviewed chronologically. 

At Iowa State University 

A. curvatum. formerly known as Candida curvata. was originally 

isolated from the Iowa State University dairy plant (Moon, 1977). A 

search was made for microorganisms that could grow on whey and produce 

oil. A. curvatum, one of the strains that was selected, utilized 

lactose efficiently and grew well on both whey and whey permeate as a 

substrate with only ammonium hydroxide added. Optimum physical 

conditions for batch fermentation in a 14-L fermentor were: pH between 

5.4 and 5.8; temperature, 28°C; aeration rate, more than 0.7 L/min/L 

medium. Under optimized conditions A. curvatum could produce 15.6 g/L 

of oil and 26.8 g/L of biomass (57% oil content) from Swiss cheese whey 

permeate in 72 hrs, and the chemical oxygen demand (COD) of the whey 

permeate was reduced by 95% (Moon et al., 1978). The fatty acid 

composition of the yeast oil varied with growth temperature, 

fermentation time and medium composition (Moon and Hammond, 1978) . 

Later, extensive examination of oil from A. curvatum grown on whey 

permeate (Choi, 1980) showed that the lipid consisted of 80 to 90% 

triglyceride. The fatty acid composition of the triglyceride was 30.4% 
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palmitic, 0.8% palmitoleic, 11.4% stearic, 51.0% oleic, 6.2% linoleic 

and 0.4% linolenic acid. Glyceride structure analysis showed that 

saturated acyl groups were almost completely excluded from the sn-2 

position of the glycerol. Major components of the polar lipids and 

unsaponifiable lipids were identified as phosphatidylcholine and 

squalene, respectively. Among the various extraction methods tried, a 

sequential extraction with ethanol, hexane and benzene was the most 

effective. By recrystallization of the yeast oil, a fraction that 

contained 33% of the original weight was obtained and the fraction was 

reported to have a melting range and glyceride structure similar to 

those of cocoa butter (Hammond et al., 1981). 

Teasdale (1981) tried to improve the economics of A. curvatum 

fermentations. He confirmed that the ratio of carbon to nitrogen was a 

very important parameter for production of biomass and oil and for COD 

reduction in the fermentation process. Attempts to reduce the 

fermentation time by using high inoculum levels and condensed permeate 

were not successful. However, fermentations with both unheated and 

pasteurized (63°C, 30min) permeate were successful when the inoculum 

size was 10^ cells/ml or greater, but unpasteurized medium gave lower 

biomass and oil yields. Permeate from Swiss, Cheddar, blue, cottage 

wheys and milk showed potential as substrates for the fermentation 

(Hammond et al., 1981). 

Attempts were also made to alter the characteristics of the yeast 

by mutagenesis to improve the economics of the fermentation process 

(Baehman, 1983). Mutants of A. curvatum that could grow faster, at 
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lower pH, and at lower or higher temperature than usual were targets of 

the mutagenesis. Mutants were generated by exposure of cells to 

ultraviolet light; however, the mutants that were isolated were not 

superior in their performance, and mutants tended to revert to the wild 

type when they were cultured in broth medium (Glatz et al., 1984). 

Potential uses of A. curvatum in treatment of other waste products 

from food and agricultural processing also were studied. Floetenmeyer 

(1983) tried various simple or complex carbohydrates as carbon sources 

for the fermentation. The yeast grew well on mono- and disaccharides 

such as glucose, galactose, xylose, mannose, fructose, ribose, maltose, 

cellobiose, sucrose and lactose but not on arabinose. Cellulose-rich 

waste material such as corn cobs, wood cellulose and oat hulls showed 

limited growth and no lipid accumulation. Good yield of biomass but 

poor lipid accumulation were observed when blanch water from bean 

processing and soluble starch were used as carbon sources. Ripe bananas 

were good substrates for both cell growth and lipid accumulation 

(Floetenmeyer, 1983; Glatz et al., 1984). 

Generally continuous culture systems are considered more 

commercially attractive. Floetenmeyer et al. (1985) also proved that 

continuous culture fermentation was much more effective in lipid 

accumulation than was a batch system when heat-sterilized whey permeate 

was used as growth medium. In a system with a 350-ml working volume, 

the optimum dilution rate was 0.05 hr"^, at which rate 0.306 g/L/hr of 

lipid was produced. This rate can be compared with 0.095 g/L/hr as the 

best for a batch system. The yield of biomass was 0.665 g/L/hr 
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(Floetenmeyer, 1985). 

In 1983, A. curvatum was first reported to have moderate exolipase 

activity and to be able to grow on corn oil as sole carbon source in 

shake flasks. This result was observed during searches for oleaginous 

yeasts that were able to modify fats and oils by fermentation. These 

results showed that the yeast could grow on fatty acids as substrates 

(Bati, 1983). Kinetic aspects of the fermentation with A. curvatum were 

also investigated (Brown, 1984). Kinetic studies of cell growth and 

lipid accumulation provide useful information in optimizing process 

conditions and in assessing the potential of the process. A model was 

devised for both batch and continuous fermentation in a 7-L or 14-L 

fermenter, and the model described some phenomena of the fermentation 

satisfactorily. From the model it also could be concluded that 

residence time of a two-stage continuous fermentation system would not 

be significantly shorter than that of a single-stage system (Brown, 

1984; Glatz et al., 1984). 

In 1985, mutagenesis of A. curvatum was again attempted (Li, 1985). 

Efforts were focused on isolation of mutants with higher temperature 

tolerance that were expected to shorten the fermentation time and to 

produce oil with a more desirable composition. Mutagenesis was done by 

N-methyl-N'-nitro-N-nitrosoguanidine (MNN6), raising the selection 

temperature 0.2°C at a time. A mutant was obtained that could grow at 

in shake flasks with nitrogen-limited medium (150mg/L) and was 

stable. However, the lipid yield of the mutant at the elevated 

temperature was not better than that of the wild type at 30°C. Also the 
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fatty acid profiles of the lipids from the two fermentations were not 

significantly different. Growth of A. curvatum on corn oil as a carbon 

source was reported in one of the tests for biomodification of oils with 

the yeast. This resulted in a lipid yield of 7.29 g/L; dry cell weight, 

11.17 g/L; % lipid, 65.3. Fatty acid composition of the yeast oil was 

similar to that of substrate corn oil; however, the oil from the 

harvested cell was not completely free of substrate oil. 

As a previous study had indicated, ripe bananas were a good 

substrate for lipid production by A. curvatum (Ploetenmeyer, 1983), 

More extensive studies were performed to optimize conditions for the 

fermentation of ripe banana juice (Vega, 1987). In this study with a 

500-ml working volume fermentor, optimum conditions for growth and oil 

accumulation were; temperature, 30°C; efficient aeration (but not with 

pure oxygen); banana juice concentration, 20%; heat treatment of the 

juice (less than sterilization); asparagine, 1.4 g/L; mineral salts 

(mg/L; MgS04.7H20, 1000; Feclj.ôHjO, 20; CaCl2.2H20, 200; ZnS04.7H20, 1; 

MnS04.H20, 2;NaCl, 60; and CuSO^.7H2O, 0.1). A fed-batch fermentation 

in which sterile banana juice was added as the culture density 

increased, yielded cell dry weight three times greater than in batch 

fermentation. However the cellular lipid content was low (30%) and 

utilization of COD was poor (32% utilized in 82 hr) (Vega et al., 1988). 

More detailed physiological studies of A. curvatum were performed 

in a chemically defined medium by Park (Park, 1989; Park et al., 1990). 

The yeasts that were grown at various C/N ratios varied in growth, lipid 

accumulation and cell composition. Park reported that the yeast could 
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utilize not only endogenous lipid but also endogenous carbohydrate as 

carbon and energy sources when it was starved for carbon, and that 

intracellular carbohydrate was an intermediate for both lipid 

accumulation and lipid turnover. Strong induction of catalase activity 

was reported when the yeast was manipulated to utilize endo- and 

exogenous lipid, which implied the importance of peroxisomal beta-

oxidation and the glyoxylate cycle in lipid degradation. Proliferation 

of peroxisomes also was demonstrated by electron microscopy. Purified 

peroxisomes but not mitochondria from A. curvatum showed high activity 

of several key enzymes of beta-oxidation and the glyoxylate cycle. Park 

suggested an essential role of peroxisomes in lipid metabolism in the 

oleaginous yeast A. curvatum. 

At the Universitv of Hull. England 

In 1981, Ratledge and his associates began studies on A. curvatum. 

This group had already been investigating microbial production of lipid 

and biochemical explanations of lipid synthesis in other oleaginous 

microorganisms (Whitworth and Ratledge, 1975; Gotham and Ratledge, 1978; 

Gotham and Ratledge, 1979; Ratledge, 1982). A. curvatum provided an 

excellent model for correlating lipid accumulation with the activities 

of various enzymes envolved in lipid biosynthesis. Along with A. 

curvatum. Rhodosporidium toruloides. Hansenula saturnus. Trichosporon 

cutaneum. Candida 107, Rhodotorula oraminis. Rhodotorula alutinis. 

Lipomvces starkevi. Lipomvces lipofer. also were studied, and compared 

with nonoleaginous yeasts such as Candida utilis, Saccharomvces 
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cerevlsiae and Saccharomvces uvarum. Their research in this area was 

discussed earlier in this literature review. The discussion here will 

be restricted to papers which dealt with A. curvatum. 

In 1983, Evans and Ratledge anticipated the likely 

commercialization of the yeast and performed fermentation studies with 

A. curvatum. Various carbon sources such as glucose, sucrose, lactose, 

xylose and ethanol were tested for efficiency of fat production in batch 

and continuous systems. Ethanol was reported as the least efficient 

substrate. On the other hand, xylose and lactose were the best 

substrates for lipid accumulation in batch and continous modes, 

respectively. The optimal dilution rate was also determined for each 

substrate. The fatty acid profile of the yeast varied with substrate 

and whether the fermentation was batch or continuous. Some of the 

fermentation results are summarized in Table 2. 

The potential utilization of food waste products by this organism 

prompted more detailed biochemical studies (Evans and Ratledge, 1983b). 

Examination of the various enzymes for lipid biosynthesis in A. curvatum 

gave results that generally corresponded with those of other oleaginous 

yeasts. Citrate was found in the culture medium when nitrogen became 

limiting. 

The physiological function of the accumulated lipid in oleaginous 

yeasts was not clear, and the Ratledge group also addressed the question 

of possible utilization of endogenous lipid. In a 1979 paper, Botham 

and Ratledge reported that lipid turnover did not occur or occurred at 

an immeasurably slow rate in a steady-state culture of the oleaginous 
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Table 2. Comparison of growth and lipid accumulation of A, curvatum 
produced under various cultural conditions 

Culture Mode Carbon Source C/N Dilution Rate 
(hr-1) 

DOW 
(g/L) 

%lipid Y* 
(g/L/hr) 

Batch^ Whey permeate - -
U CD \D C
M
 

57 0.217 

Continuous^ Whey permeate - 0.05 13.1 45 0.306 

Batch® Lactose - - 12.5 39.2 0.054 

Continuous® Lactose - 0.04 18.of 31 0.220 

Continuous? Whey permeate 43 0.04 24.8 37.7 0.374 

Batch^ Banana juice - - 11.6^ 71.2 0.088 

Batchj Whey permeate 40 - 21.6% 36 0.199 

Continuous] Whey permeate 20 0.07 21.0 20 0.294 

Continuous] Whey permeate 40 0.053 20,0 36 0.382 

Fed-batch^ Whey permeate 40 - 85.0® 35 0.372 

Partial* 
recycling 

Whey permeate 40 0.033 91.4 33 0.995 

®Lipid yield. 
^Moon et al., 1978. 
^Culture for 72 hr. 
^Floetenmeyer et al., 1985. 
®Evans and Ratledge, 1983. 
fCulture for 90 hr. 
^Davies, 1988. 
^Vega et al., 1988. 
^Culture for 96 hr. 
iykema et al., 1988. 
^Culture for 39 hr. 
^Ykema et al., 1988; A recycle unit was attached to a batch culture 

after all lactose was consumed (total feed flow rate = 0.15 L/hr). 
"culture for 70 hr. 
*Ykema et al., 1988; A recycle unit was attached to a batch culture 

after all lactose was consumed (total feed flow rate = 0.15 L/hr); when 
a dry cell weight of about 90 g/L was reached an extra pump withdrawing 
culture (bleed flow rate = 0.033 L/hr) was added. 
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yeast Candida 107 on a nitrogen-limited medium at a dilution rate of 

0.05 h. In a 1988 paper, Holdsworth and Ratledge reported that most 

oleaginous yeasts were able to convert their accumulated lipid to new 

biomass if they then were starved for carbon. A. curvatum produced 

1.9 ± 0.2 g of new biomass per g lipid utilized. In contrast, I^ipomvces 

starkevi could not use accumulated lipid to produce new biomass. The 

onset of the lipid turnover seemed to occur immediately after carbon was 

removed, and in the early stages of turnover, rapidly metabolizable 

nonlipid materials were detected. 

Further studies followed to understand the control of lipid 

turnover. These studies involved examining the activities of six key 

enzymes of lipid metabolism (Holdsworth et al., 1988). Two important 

enzymes for lipid biosynthesis, ATP:citrate lyase and malic enzyme, 

showed diminished activity during lipid utilization. Two peroxisomal 

enzymes, carnitine acetyl transferase and isocitrate lyase showed 

considerable increase in activity during lipid utilization; however, 

NADP^-dependent isocitrate dehydrogenase increased slightly. The 

activity of catalase varied among yeast species. Proliferation of 

peroxisomes was demonstrated in the cells that utilized endogenous 

lipid. Also, they observed greater changes of enzyme activities in 

yeasts utilizing exogenous lipid than in those utilizing endogenous 

lipid. 

Holdsworth and Ratledge (1991) also were involved in the 

biochemical study of triacylglycerol biosynthesis in the oleaginous 

yeast A. curvatum. Review of this work will be found in a later section 
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Vriie Universiteit, The Netherlands 

This Dutch group became involved in studying lipid production by 

A. curvatum in 1986. They noticed that the carbon to nitrogen ratio 

(C/N ratio) of the growth medium greatly affected the yield coefficient 

and fermentor productivity, parameters that are vital to the economics 

of microbial oil production. They constructed a mathematical model to 

describe the influence of C/N ratio on lipid production with oleaginous 

yeasts, and the model was tested by continuous fermentation of A. 

curvatum in a fermentor of 1-L working volume that contained a semi-

defined medium with glucose as the carbon source. They concluded that 

their model applied well to the experimental results (Ykema et al., 

1986). 

This group also studied the optimization of lipid production by A. 

curvatum on whey permeate as a substrate. Four different culture modes 

were tested: batch, fed-batch, continuous and partial culture recycling. 

Various C/N ratios were adjusted by adding glucose or ammonium chloride, 

and each fermentation mode was optimized. The optimum C/N ratio was 

reported to be 30-35 for all the culture systems. When cell-recycling 

systems were applied in the fed-batch and partial recycling modes, both 

attained high cell densities. A high lipid production rate (0.995 

g/L/h) was observed in the partial recycling mode. They concluded that 

culture modes capable of attaining high cell densities were desirable 

(Ykema et al., 1988). Their results, together with ones from the other 

i 
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research groups, are summarized in Table 2 on page 20. However, low 

specific growth rate {fi) often is encountered in situations with high 

cell densities; therefore, the group studied growth and lipid 

accumulation at low ju values, ranging from 0.15 hr'^ to 0.004 hr'^. 

Maintenance coefficients of A. curvatum (1.3-21.8 ^mole glucose/g 

biomass/hr) were lower than those for other fungi such as Sacharomvces 

cerevisiae. They observed no lipid production at growth rates below 

0.02 h'\ and stressed this value as an important parameter to consider 

in processes with high cell density such as fed batch systems (Ykema et 

al.,1989). 

The group also studied ways to improve the quality of the lipid 

produced by A. curvatum. ' In an attempt to make a cocoa butter 

substitute from A. curvatum. they isolated unsaturated fatty acid (Ufa) 

mutants that could not convert stearic acid to oleic acid. They suggest 

this sort of mutant because the lipid of wild-type A. curvatum has 

higher oleic acid and lower stearic acid contents than cocoa butter. 

The mutants were obtained by treatment with MNNG, and selected as oleic 

acid auxotrophs. Some of the mutants were reported to be stable over at 

least 50 generations. The mutants required oleic acid in their medium, 

and the concentration of oleic acid affected the growth, lipid 

production and fatty acid composition of the yeast oil. Comparison of 

growth and lipid accumulation with wild type was not done. However, the 

oil from the mutants was reported to have a percentage of saturated 

fatty acids similar to that of cocoa butter. Table 3 summarizes fatty 

acid profiles of cocoa butter and yeast lipids produced under various 
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Table 3. Fatty acid compositions of various yeast lipids resembling 
cocoa butter 

Yeast Strains Fatty Acids %SFA^ 
(Treatments) 

16:0 16:1 18:0 18:1 18:2 18:3 

Cocoa butter 25.8 0.3 34.5 35.3 2.9 - 60.3 

A. curvatum. wild-type^ 30.4 0.8 11.4 51.0 6.2 0.4 41.8 

A. curvatum. wild-type^ 35.3 - 17.0 43.6 4.2 0.5 52.3 
(fractionation) 

cA. curvatum. Ufa33® 22.0 1.9 36.7 24.8 8.4 1.8 58 .7* 
(oleic acid, 1 g/L) 

A. curvatum. F33® 25.9 - 20.9 36.6 7.1 - 53.3^ 
(hybrid by spheroplast 
fusion) 

A. curvatum. R25.759 28.8 - 29.5 28.4 7.7 0.9 62.7^ 

Candida 107^ 29.8 <1.0 28.0 11.1 22.7 <1.0 57.8 
(Sterculia oil, 0.8 ml/L) 

T. cuteneumi 35.3 <1.0 22.9 24.1 13.5 1.7 58.2 
(Sterculia oil, 1.2 ml/L) 

^Percentage saturated fatty acids (% w/w). 
^Hammond et al., 1981. 
"Mutant with defective desaturase; Ykema et al., 1990. 
•^Contains 1.8% 024:0. 
®Mutant with partially blocked desaturase; Verwoert et al., 1989. 
^Contains 3.3% C24:0. 
SRevertant of an Ufa mutant; Ykema et al., 1990. 
^Contains 2.1% C24:0. 
^Moreton, 1985; sterculia oil contained 49.8% sterculic and 4.8% 

malvalic acids which have a cyclopropene group which inhibit desaturation 
of stearic acid. 

JTrichosporon cutaneum; Moreton, 1985. 
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conditions (Ykema et al., 1989b). 

The Ufa mutants needed at least 0.6 g/L of relatively expensive 

oleic acid in the growth medium for appropriate growth and lipid 

accumulation. Therefore, they attempted to isolate strains with 

partially blocked desaturase activity, that could grow without oleic acid 

supplement in the medium. Spheroplast fusion between methionine 

auxotrophic mutants and Ufa mutants were reported to be successful. The 

stability of the hybrids was not mentioned, but the hybrids could grow on 

whey permeate and most of them showed comparable growth and lipid 

accumulation to the wild type (Verwoert et al., 1989). Fatty acid 

profiles of the lipids from some hybrids are shown in Table 3. Other 

attempts to get strains with partially blocked desaturase activity were 

based on selecting revertants of Ufa mutants able to grow without oleic 

acid supplementation. Fatty acid compositions of lipids from the 

revertants before and after growth for 50 generations were used as a 

criterion of stability of the revertants. Lipids from the revertants 

ranged from 27 to 86% in their percentage of saturated fatty acid (%SFA). 

Two of the revertants yielded lipids that had a %SFA and melting point 

similar to cocoa butter except for the existence of a minor fraction with 

a higher melting temperature (Table 3). The revertants grew well on whey 

permeate, but their growth rate was slower than the wild type (Ykema et 

al., 1990). 
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Other groups 

As mentioned previously, the Department of Scientific and 

Industrial Research in New Zealand has also been working on A. curvatum. 

They studied the scale-up of downstream processes as well as the 

fermentation. Detailed data for commercial-scale production of the 

yeast oil were provided from their pilot-scale studies (Davies, 1988; 

Davies, 1991). 

A Polish group at Agricultural and Technical University of Olsztyn 

also has been involved in the study of oil production with the yeast A. 

curvatum. Beet molasses was tested as the substrate for the culture in 

shake flasks, and optimal physical conditions were determined: pH, 5.4; 

temperature, 30°C. Under these condition, beet molasses had a lower 

lipid yield coefficient than synthetic medium in which the sucrose level 

was adjusted to be the same as molasses. When a mixture of beet 

molasses-whey (5:95 w/w) was used in the medium, the yield coefficient 

was high (0.225 g lipid/g sugar), and the cell mass and lipid content 

were 29.5 g/L and 40.2%, respectively (Bednarski et al., 1986). 

Deproteinized whey, obtained by thermal and acid coagulation of the 

whey, was also tested as a substrate, and it gave lower yield and lipid 

content (0.088 g/L/hr and 29.3%, respectively) than those reported by 

Moon et al (1978); however, fatty acid compositions were similar to 

those previously reported (Leman et al., 1987). Further study showed 

that the proportion of lipid fractions and fatty acid composition of the 

lipid varied with culture temperature, pH and medium substrates (Leman 

et al., 1990). 
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Studies on triacvlalvcerol assembly in oleaginous yeasts 

In the early 1950s sn-glycerol-3-phosphate and phosphatidic acids 

were found to be important intermediates for the synthesis of 

glycerolipid in animal liyer, and thioesters of long-chain fatty acids 

were shown to be inyolyed in the process (Kennedy, 1953; Kornberg and 

Pricer, 1953a,b). Since then, numerous studies have been performed to 

understand the pathway and regulation of triacylglycerol biosynthesis, 

mostly in plant and animal cells. The glycerol-3-phosphate pathway to 

triglycerides (Kennedy pathway) was originally established with animal 

tissues (Kennedy, 1961) and then with plant tissues (Barron and Stumpf, 

1962). The nonoleaginous yeasts Saccharomvces cerevisiae and Candida 

tropicalis were the only yeasts studied for triacylglycerol assembly, a 

process of conversion of fatty acid acyl CoA esters into triacylglycerol 

(Holdsworth and Ratledge, 1991). The pathways in yeasts appeared 

similar to those in animal and plant cells, and are shown in Figure 2. 

In S. cerevisiae. the enzymes responsible for each reaction have 

been identified, purified and characterized (Hosaka and Yamashi'ta, 

1984a,b). From the study correlating enzyme activities to accumulation 

of triacylglycerol, Hosaka and Yamashita (1984b) reported that 

phosphatidate phosphatase, which catalyzed the formation of 

diacylglycerol, controlled the rate of triacylglycerol assembly in the 

yeast S. cerevisiae. They also reported that the biosynthesis of 

individual fatty acid did not regulate the rate of triacylglycerol 

assembly. 
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Sn-glycerol-3-phosphate 

Glycerol-3-phosphate 
Acyltransferase 

Fatty acyl CoA 

Lysophosphatidic acid 

1-glycerol phosphate 
Acyltransferase 

Fatty acyl CoA 

Phosphatidic acid 

Phosphatidate 
Phosphatase 'Phosphate 

Diacylglycerol 

Diacylglycerol 
Acyltransferase 

Fatty acyl CoA 

Triacylglycerol 

Figure 2. Major pathways of triacyl glycerol biosynthesis in plants 
(Harwood and Russell, 1984) 
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Especially in oleaginous yeast, triacylglycerol assembly is an 

important process because glyceride structure, a major factor for oil 

quality, is determined in this step. However, triacylglycerol assembly 

in oleaginous yeast has not been studied much. Studies on the 

modification of lipids by microorganisms indicated that the 

microorganisms not only utilized the substrate lipid in catabolic 

processes but also incorporated the substrate's carbon skeleton directly 

into triacylglycerol reserves (Bati, 1983; Li, 1983; Koritala et al., 

1987). Bati et al. (1984) showed that the fatty acid composition of the 

yeast oil from Ç. lioolvtica was similar to that of the substrate corn 

oil, but there were significant changes in the distribution of the fatty 

acids. Noguchi et al. (1982) used various esters of different fatty 

acids as carbon sources for the culture of several species of 

Rhodotorula and Candida to study the regulation of yeast lipid 

formation. They demonstrated that the fatty acid composition of the 

yeast oil varied greatly with the esters presented in the substrate oil. 

Also, they observed a.difference between yeast lipids obtained from 

ethyl stearate and butyl stearate as substrates (Table 4). They did not 

study the fatty acid distribution on the glycerol in the yeast oil. 

Because alkane is converted to fatty acids before being utilized in 

the cells of some microorganisms, it has also been used as a useful 

substrate to study the metabolic and physiological features of some 

oleaginous yeasts such as c. lioolvtica (Fukui and Tanaka, 1981; Tanaka 

et al., 1982; Fukui, 1988). Recently, Efremenko et al. (1990) reported 

their study on the regulation of lipid in the yeast Candida ruaosa with 
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Table 4. Effect of substrate esters on growth, lipid and fatty acid 
composition of lipid from Candida 1-31® (Noguchi et al., 1982) 

Fatty acid composition 
Carbon source DCM^ LC® 

(g/L) (%) 10:0 12:0 14:0 14:1 16:0 16:1 18:0 18:1 18:2 

Ethyl 7,7 20.8 0.6 0.3 21.1 5.0 13.8 52.8 5.6 
caprate 

Ethyl 14.2 33.1 0.2 20.4 2.2 5.2 15.7 5.5 11.0 41.4 3.2 
laurate 

Ethyl 16.4 32.9 35.8 15.7 10.3 4.1 25.6 2.6 
myristate 

Methyl 17.8 41.0 62.1 16.6 3.5 14.5 2.0 
palmitate 

Ethyl 18.2 46.2 60.1 16.6 3.0 16.1 2.2 
palmitate 

Isopropyl 15.3 52.0 60.7 15.9 3.8 16.1 2.2 
palmitate 

Ethyl 16.7 44.3 15.6 0.7 43.5 33.5 5.1 
stearate 

N-butyl 8.8 42.0 41.7 8.1 19.3 23.8 2.8 
stearate 

Ethyl 16.1 53.6 5.8 7.0 3.3 75.7 6.1 
oleate 

®The culture was incubated for 5 d at 35°C (stearate esters), 30°C 
(other esters) in 500-ml flasks containing 80 ml of the culture medium 
in reciprocating shaker (145 oscills/min, 7cm stroke). 

^Dry cell weight. 

®Lipid content. 



www.manaraa.com

31 

alkanes as carbon sources in the presence of cerulenin (2 mg/L) which 

inhibited ̂  novo synthesis of fatty acid. Thus, the yeast lipid was 

necessarily determined by the substrates used. The yeast could survive 

on octadecane, eicosane and docosane as their only carbon source when 

their fatty acid synthesis was blocked by cerulenin (Table 5); however, 

the yeast could not grow on hexadecane even when glucose was added as a 

carbon source. They concluded that the yeast was not able to synthesize 

functional membranes from palmitic acid, the fatty acid corresponding to 

hexadecane. Because the fatty acid composition in yeast lipid and 

membrane lipid produced from various chain length alkanes was relatively 

constant, they suggested that the yeast had a mechanism to maintain the 

consistency of its membrane lipids, and that the mechanism was based on 

the substrate specificity of the enzymes controlling fatty acid 

metabolism. They believed that peroxisomes and mitochondria were 

involved in membrane lipid production. They demonstrated that entry of 

eicosanoic acid into mitochondria was considerably greater than that of 

stearic acid. However, the substrate specificities of the enzymes 

involved were not investigated. Obviously, the experiments of Efremenko 

et al. (1990) do not seem to be an appropriate system to study 

triacylglycerol assembly, because the yeast was harvested before the 

stage of rapid accumulation of yeast lipid, and the lipid was extracted 

with a chloroform-methanol mixture (1:2 w/w) which favored the 

extraction of polar lipids. However, there are interrelationships 

between the metabolic pathways of neutral lipids and phospholipids 

(Rattray et al., 1975; Harwood and Russell, 1984). 
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Table 5. Fatty acid composition of lipids from C. ruaosa on various 
alkanes as carbon sources in or without the presence of 
cerulenin* (Efremenko et al., 1990) 

Carbon source 
Fatty acid composition 

13:0 16:0 16:1 16:2 18:0 18:1 18:2 18:3 

17.8 3.8 10.4 49.0 19.0 tr^ °18 
Cjg + cerulenin 18.4 3.6 8.9 45.0 24.1 tr 

CgQ 2.9 20.3 8.7 tr 7.1 39.2 20.9 tr 
C20 + cerulenin tr 19.5 7.5 4.6 4.0 25.3 31.8 5.2 

C22 tr 23.1 10.1 6.1 1.9 43.9 14.3 tr 
C22 + cerulenin tr 20.2 8.6 5.8 3.0 36.7 19.1 tr 

*The culture was grown to the middle of the exponential phase in 
Erlenneyer flasks (alkane, 10 g/L). 

^Trace. 

A paper on triacylglycerol synthesis in the oleaginous yeast A. 

curvatum was published recently by Holdsworth and Ratledge (1991). From 

a study with cell-free extracts and spheroplasts of the yeast grown on 

nitrogen-limited medium, they reported much lower activity of the fatty 

acyl CoA synthetase with stearate than with palmitate, oleate and 

linoleate. Also stearate and stearyl CoA were poorly incorporated into 

lipids. Another oleaginous yeast, Lipomvces starkevi. did not show such 

a difference in the activity of its fatty acyl CoA synthetase. As is 

the case in S. cerevisiae. the rate-limiting step of lipid biosynthesis 
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in A. curvatum was reported to be phosphatidic acid phosphatase, 

according to this study. 

Identification of the site of lipid synthesis in A. curvatum also 

was investigated. Christiansen (1978) had isolated lipid particles from 

a homogenate of S. cerevisiae. and reported that the lipid particles 

were associated with triacylglycerol-synthesizing enzymes. From the 

study with subcellular fractionation of spheroplasts of A. curvatum. 

Holdsworth and Ratledge (1991) reported that the activity of fatty acyl 

CoA synthetase appeared mainly in the lipid bodies, and the activity for 

phosphatidic acid formation was in the mitochondria. For the 

restoration of triacylglycerol synthesizing activity of the ceil, all 

the fractions had to be recombined. 
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PART I. 

IRIACYLGIiYCEROL ASSEMBLY 

FROM LIPID SUBSTRATES BY 

APIOTRICHUM CURVATUM AICC 20509 
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ABSTRACT 

The oleaginous yeast Apiotrichum curvatum was grown on various 

lipids as carbon sources. When commercial animal and vegetable oils 

were used as substrates, the yeast triglyceride had a fatty acid profile 

similar to that of the substrate oil, but the glyceride structures were 

altered. Saturated free fatty acids with less than 14 carbons could not 

be used as carbon sources by the yeast. An emulsion of palmitic acid 

was well utilized by the yeast, but it was extensively desaturated 

before being deposited in the yeast triglyceride. Stearic and arachidic 

acid emulsions gave very limited and no growth, respectively. Oleic 

acid supported very good yeast growth; eicosenoic acid supported limited 

growth; erucic acid gave very poor growth. The yeast grew on 

petroselinic acid and deposited it extensively in its triglyceride. 

When supplemented with 1000 ppm butylated hydroxyanisole, linoleic and 

linolenic acids showed excellent growth and lipid accumulation. The 

yeast deposited ricinoleic acid, eleostearic and vernolic acids in its 

triglyceride when the yeast was grown on triglycerides containing these 

fatty acids, but the yeast triglyceride contained less of these 

conjugated and oxygenated acids than were found in the substrate oils. 

When crambe oil was used as a carbon source for the yeast, fatty acids 

with 20 or more carbons were concentrated in the residual substrate oil 

while those with 16 and 18 carbons were almost completely utilized. 

When cholesterol was incorporated in the growth medium, the yeast 

incorporated very little of it into its depot fats. 
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INTRODUCTION 

Production of single-cell oil is marginal economically (1, 2), and 

most studies of such processes have focused on using inexpensive 

substrates such as wastes or by-products from the food industry (3, 4, 

5, 6) or production of high-priced lipid products (7, 8, 9, 10, 11, 12). 

The prices of fats and oils hinge on their chemical, nutritional 

and physical properties, and these are determined by their fatty acid 

composition and glyceride distribution. The fatty acid composition of 

microbial oils can be varied to some extent by manipulating growth 

temperature, pH, culture time, and medium composition (4, 13, 14). More 

extensive modification of the fatty acid composition has been achieved 

with an inhibitor of acyl desaturase (15), by addition of fatty acids to 

the growth medium (8, 16) and by selection of mutants with altered 

ability to synthesize fatty acids (7, 16, 17). 

When grown on sugar substrates, Aoiotrichum curvatum accumulates 

triglycerides with an acyl composition typical of vegetable oils (1). 

The glyceride structure also is like a typical vegetable oil with 

saturated acyl groups confined to the sn-1 and sn-3 positions. Because 

A. curvatum will use fatty acids and triglycerides as substrates, this 

yeast provides a simple and convenient means of exploring triglycerides 

assembly. The insights gained from such studies may be applicable to 

oilseed plants for which such studies are more difficult. 

There is considerable interest in transferring the ability to make 

unusual fatty acids of economic importance into domesticated oilseed 
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crops (18, 19, 20). Oils that contain fatty acids that have industrial 

uses, such as eleostearic, ricinoleic or vernolic acids, command a price 

significantly higher than typical edible oils. The transfer of the 

ability to make such fatty acids to an oleaginous yeast also might 

provide an economically viable fermentation process. The ability of A. 

curvatum to assimilate fatty acids from its medium provides a convenient 

method of testing the ability of an oleaginous yeast to tolerate and 

metabolize such exotic fatty acids, and the insights that are gained may 

also be applicable to oilseed plants as well. 

We have observed the ability of A. curvatum to alter and 

incorporate into its triglycerides various lipid substrates, and the 

stereospecific distribution of the acyl groups in the resulting 

triglycerides has been determined. These studies have included a 

number of fatty acids not normally produced by A. curvatum. 
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MATERIALS AND METHODS 

A. curvatum was maintained on refrigerated slant cultures of 

yeast extract/dextrose/peptone/agar (1/2/2/1.5 %w/w), transferred 

monthly (21). The basal medium (Table 1) was adjusted to pH 5.5 and 

supplemented with 18 g/L of substrate lipid. 

Pure fatty acids and castor oil were purchased from Sigma Chemical 

Co. (St. Louis, MO). Soybean oil, corn oil, lard (fortified with 

butylated hydroxyanisole, propyl gallate and citric acid) and tung oil 

were purchased from local stores. Crude pressed crambe oil was provided 

by the Center for Crops Utilization Research at Iowa State University. 

Vernonia anthelmintica seed oil was extracted after deactivation of 

lipase of the seeds according to the method by Ayorinde et al. (22). In 

the experiments with combinations of lactose and corn oil as carbon 

sources, the amount of oil in the medium was reduced 1.8 g for every 4 g 

of lactose added. 

A seed culture was prepared by inoculating about 2% of the yeast 

washed from a slant culture into 100 ml of heat-sterilized basal medium 

with corn oil as a carbon source. The culture was grown in 250-ml 

flasks in a Labline orbital shaker (Melrose Park, IL) at 32°C and 180 

rpm. The seed culture was in logarithmic growth after about 2 days, and 

its optical density (OD) at 440 nm was normally 9 to 10. About 1 ml of 

seed culture was used as an inoculum for 100 ml of medium containing the 

substrate lipid to be tested. The test cultures were grown for 7 days 

under the same conditions used for the seed culture. 

Leftover substrate was separated from the culture in a separatory 
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Table 1. The composition of the basal medium 

g/L mg/L 

KHgPO^ 2.5 NaCl 60 

MgSO^.THjO 1.0 FeClg.eHgO 20 

Asparagine 0.8 MnSO^.HgO 2 

CaClg-ZHgO 0.2 ZnSO^.VHjO 1 

Thiamine-HCl 1 

CuSO*.SHgO 0.1 

funnel if the substrate was liquid at room temperature, oil extraction 

from the yeast was according to Hammond et al. (23), which involved 

extraction in sequence with ethanol, hexane and benzene. Fatty acids 

having melting points above 32°C were emulsified into the medium with 5 

g/L gum acacia (8). After heat-sterilization of the mixture of gum 

acacia, fatty acid and basal medium in a blender jar, emulsion was made 

in situ by blending at high speed for 1 min and transferred aseptically 

into the culture flasks. When emulsified substrates were used, 

agitation was decreased to 120 rpm to minimize destabilization of the 

emulsion. The yeast cell mass could not be separated completely from 

the emulsified fatty acid by centrifugation, so after removal of as much 
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of the cell mass as possible by centrifugation, the supernatant was 

evaporated in a rotary vacuum evaporator, and the residue was pooled 

with the cell mass recovered by centrifugation. Extraction of lipid in 

this residue was accomplished as before. 

Dry weight of the cell residue (DCW) after lipid extraction was 

determined by drying the residue at 110°C for 2 hr and weighing it. The 

amount of triglyceride in yeast oil was determined by thin-layer 

chromatography (TLC). Aliquots of the ethanol extract and pooled hexane 

and benzene extracts were applied to TLC plates 1.0 mm thick. The 

plates were developed in hexane/ether/acetic acid (85/15/1, v/v/v), and 

bands were visualized by spraying with 0.2% dichlorofluorescein in 

ethanol and viewing under ultraviolet light. Triglycerides were eluted 

from the plates with three 20-ml portions of diethyl ether, and the 

residue was weighed after evaporation of the ether under nitrogen. 

Stereospecific analysis was done according to Fatemi and Hammond (24). 

For fatty acid analyses, glycerides were transesterified by the method 

of Frey and Hammond (25), and the methyl esters were separated on a 

Varian Model 3700 Gas Chromatograph eequipped with a 1.8 M x 3.3 mm 

column of 10% SP-2330 on Chromosorb HAW and a flame ionization detector 

(FID). Verification of oleic, petroselinic and cis-vaccenic acid was 

done isothermally at 190°C on a Hewlett Packard Model 5890 Gas 

Chromatograph equipped with FID and a fused silica column (15 M x 0.254 

mm) with 0.25 fj of DB-23 as a liquid phase (J & W Scientific, Folsom, 

CA). 

For cholesterol analysis, 0.5 to 1 g of lipid was refluxed with 1.5 

% 
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ml of 60% w/w aqueous potassium hydroxide and 25 ml of ethanol for 30 

min. The reaction mixture was extracted with four 50-ml portions of 

diethyl ether, and the ether extracts were combined and washed three 

times with 25-ml portions of water. The ether layer was washed twice 

with a sequence of 20 ml of 0.5 N aqueous potassium hydroxide and 25 ml 

of water. Additional washing with water was continued until the 

washings did not change the color of 1% phenolphthalein indicator to 

pink. The washed ether layer was evaporated under nitrogen in a rotary 

vacuum evaporator, and the residue was transferred to a vial with 

several portions of chloroform. The solvent was again evaporated to 

dryness under nitrogen; then, 1 ml of internal standard solution (400 

ppm of 5-a-cholestane in ethyl acetate) was added to the vial. The 

ethyl acetate solution was injected into a Varian Model 3700 Gas 

Chromatograph equipped with a 30 m x 0.32 mm capillary column SPB-1 

(Supelco, Bellefonte, PA), a direct capillary injector and a flame 

ionization detector. The concentration of cholesterol was calculated 

from the peak areas. Yeast was grown on a medium containing 18 g/L of 

oleic acid spiked with 2234 ppm of cholesterol. 

All reported results are the average of two replicate measurements 

except those of stereospecific anylyses, which represent a single 

measurement. However, the errors for stereospecific analyses were less 

than 7% in determining the whole, sn-1 and sn-2 compositions. 
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RESULTS AND DISCUSSION 

Modification of oils by A. curvatum 

Table 2 shows that triglycerides isolated from A. curvatum grown on 

corn oil had a fatty acid composition almost identical with that of corn 

oil. However, significant changes in the glyceride structure were 

observed. These results are similar to those obtained by Bati et al. 

(26) with Candida lipolvtica. The yeast shows much less tendency to 

place linoleyl groups on the sn-2 position compared with corn oil. The 

yeast favored placing oleyl groups on sn-2 to a greater extent than is 

found in corn oil. Palmityl groups were placed on sn-1 more readily 

than on sn-3 by the yeast. 

Similar trends were observed with lard as a substrate, but the 

yeast oil contained fewer saturated and more unsaturated acyl groups 

than the substrate fat. The elevated concentration of palmityl groups 

on the sn-2 position of lard had been redistributed to the sn-1 and -3 

positions by the yeast, but sn-1 was favored over sn-3. Oleyl groups 

are concentrated on the sn-2 position of the yeast oil, and 

polyunsaturated acyl groups are favored on sn-3. Seemingly, the yeast 

hydrolyzes and absorbs the medium oil and redistributes the fatty acids 

according to the specificity of its enzymes for triglyceride 

biosynthesis. Inasmuch as the yeast triglyceride serves as an energy 

reserve (21), it is advantageous for the yeast tp deposit the medium fat 

or oil with minimal change in its fatty acid composition. The fatty 

acid composition of the triglycerides of yeast that were grown on 
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Table 2. Stereospeoific analysis of yeast oil triglyceride compared with 
its substrate oil 

On corn oil 
16:0 18 :0 18:1 18:2 18:3 

Substrate 11.4 2 .1 26.7 58.8 1.1 

sn-1 21.3 2 .9 23.6 50.8 1,5 

sn-2 1.3 0 .3 26.7 70.6 1.0 

sn-3 11.6 3 .1 29.8 55.0 0.8 

Yeast oil 8.8 2 .8 27.3 60.1 1.0 

sn-1 17.1 2 .6 18.6 61.0 0.7 

sn-2 0.4 0 .2 41.3 57.8 0.4 

sn-3 8.9 5 .6 22.0 61.5 1.9 

On lard 

14: 0 16:0 16:1 17:0 17:1 18:0 18:1 18:2 18:3 20:0 

Substrate 1. 3 24.6 2.8 0.5 0.4 14.8 42.8 11.2 0.6 1.0 

sn-1 0. 8 12.8 2.6 0.7 0.3 24.0 46.0 10.5 0.9 1.5 

sn-2 3. 6 66.6 5.4 - 0.5 3.3 14.9 5.6 - -

sn-3 * * 0.4 0.8 0.4 17.1 67.5 17.5 0.9 1.5 

Yeast oil 18.5 2.3 - - 7.1 53.6 18.0 0.5 -

sn-1 32.9 3.4 - - 8.3 42.1 13.4 - -

sn-2 3.2 0.7 - - 0.5 81.2 14.1 0.3 -

sn-3 19.4 2.8 - - 12.5 37.5 26.5 1.2 

*Negative value. 
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various amounts of both lactose and corn oil as carbon sources are shown 

in Figure 1. The more lactose there was in the medium, the more closely 

the fatty acid profile resembled that of yeast oil grown on lactose 

alone as the carbon source. The linearity of the response to corn oil 

and lactose suggests that A. curvatum can use these carbon sources 

equally well. 

Growth of Yeast on Various Fatty Acids 

Growth of the veast on saturated short-chain fatty acids fC^toCj^^^ 

The yeast grew just as well on the free fatty acids isolated from 

vegetable oils as on the oils themselves, and yeast oils from these two 

substrates gave identical fatty acid profiles and glyceride structures. 

When the yeast was grown on free fatty acids and extracted sequentially 

with ethanol, hexane and benzene (23), the ethanol extract generally was 

rich in free fatty acids, with only traces of triglyceride. The hexane 

and benzene extracts contained primarily triglyceride with only traces 

of fatty acid, and generally, the benzene extract contained less free 

fatty acid than the hexane extract. A. curvatum grown on sugar contains 

almost no free fatty acid (13), so it was assumed that the free fatty 

acid recovered from the yeast was substrate and that the triglyceride 

was yeast oil. It was not possible to make this simplifying assumption 

when the yeast was grown on triglyceride, so yield data were not 

available when triglyceride substrates were used. However, it seems a 

safe assumption that the final benzene extract from such yeast 

represents yeast triglyceride that is essentially free of substrate 
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Figure 1. Fatty acid compositions of yeast triglycerides from A. curvatum 
grown on various amounts of both lactose and corn oil as carbon 
sources. The medium with 0 g/L of oil contained 40 g/L of 
lactose, and the lactose was decreased 13.3 g/L for each 6 g/L 
of corn oil added 
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contamination. 

Short-chain fatty acids, which have melting points lower than the 

incubation temperature (32°C), could be added to the medium directly. 

None supported the growth of the yeast, but when glycerol tributyrate and 

tricaprate were used as substrates, the yeast grew. The yeast oil 

recovered from the benzene extract of yeast grown on tributyrin had the 

same composition as yeast grown on sugar (Table 3). Seemingly, the yeast 

could not incorporate butyryl groups into its triglycerides but could use 

the butyric acid and/or glycerol in tributyrin as a carbon substrate. On 

the other hand, capric acid was detected in the yeast oil grown on 

tricaprin. ' Seemingly, on a triglyceride substrate, the yeast was able to 

incorporate capric acid into its triglycerides as well as elongate it and 

use caprate (or glycerol) as a carbon source. 

The fatty acids longer than capric were solids at the growth 

temperature of the yeast (32°C), so they were emulsified with gum acacia 

to test their ability to support yeast growth. There was no sign of growth 

or fat production by the yeast on gum acacia alone. Laurie acid, like the 

shorter-chain fatty acids, did not support growth of the yeast, but growth 

was observed with myristic acid as a carbon source. On myristic acid, the 

cell mass and amount of yeast oil recovered were quite small, but the yeast 

triglyceride was more than 90% myristic acid. Because the melting point 

of alpha-form trimyristin is 33°C (27), the yeast oil must be very near its 

melting point at the culture temperature. 



www.manaraa.com

47 

Table 3. Fatty acid composition of triglycerides from A. curvatum 
grown on lactose, glycerol, tributyrin and tricaprin as 
carbon sources 

Lactose 

Glycerol 

Tributyrin 

Tricaprin 

10:0 12:0 

15.3 3.8 

14:0 16:0 

0 . 8  2 8 . 6  

0.9 30.7 

0.8 31.1 

3.3 21.1 

16:1 18:0 

0.8 19.6 

20.9 

1.3 15.5 

2.2 8.7 

18:1 18:2 

45.4 4.7 

43.0 4.5 

47.5 3.9 

38.5 7.0 

Growth of the veaat on long-chain saturated fatty acids 

Table 4 shows the fatty acid composition and stereospecific 

analysis of the triglyceride from yeast grown on palmitic acid for 3.5 

and 7 days. The yeast grew well on palmitic acid and produced 7.6 g/L 

of fat, which is comparable to that produced on oleic acid. As the 

culture aged, the yeast converted more of the palmitic acid to oleic 

acid. Considerable proportions of the palmitic acid are converted to 

palmitoleic, oleic and linoleic acids, presumably by desaturation and 

elongation. The octadecenoic acid was verified as oleic rather than 

cis-vaccenic, which would be produced by elongation of palmitoleic acid, 

by its retention time in the gas chromatograph. This suggests that 

desaturation followed elongation to 18 carbons. 
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Table 4. Stereospeoific analysis of triglyceride from A. curvatum grown on 
palmitic acid as a carbon source for 3.5 and 7 days 

16:0 16:1 18:0 18:1 18:2 

3.5d (TG*) 65.2 16.1 0.4 15.7 2.6 

sn-1 83.2 9.4 0.5 5.7 1.2 

sn-2 15.9 34.8 - 42.6 6.7 

sn-3 96.5 4.1 0.7 * * 

7d (TG) 61.3 13.9 . 0.8 21.5 2.6 

sn-1 82.4 11.9 - 5.7 -

sn-2 11.5 24.2 - 56.7 7.6 

sn-3 89.9 5.7 2.4 2.0 0.1 

^Triglyceride. 

*Negative value. 

Normally the yeast almost completely excludes saturated acyl groups 

from the sn-2 position of glycerol, but stereospecific analysis of the 

yeast oil showed that 11 to 16% of the acyl groups at sn-2 were 

palmitoyl (Table 4). Seemingly, the unusual carbon source forced the 

yeast to place more saturated acyl groups on the sn-2 position than it 

normally does. 
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The emulsion of stearic acid gave very limited growth and lipid 

accumulation (1.35 g/L of fat). Table 5 shows the fatty acid 

composition and sn-2 composition of triglycerides from yeast grown on 

stearic acid. The stearic acid seems to be desaturated to oleic and 

linoleic acid, and more oleic acid is produced on stearic acid as a 

substrate than with palmitic acid. There is relatively little change in 

the length of the fatty acid chain. Much less saturated acid was found 

on the sn-2 position than was found with palmitic as substrate. The 

yeast could not grow on the emulsion of arachidic acid. 

Growth of the yeast on monounsaturated fattv acids 

Fatty acids with one double bond were more convenient carbon 

source» than long-chain saturated acids. The monoenes caused no 

oxidation problems and required no emulsification. Substrate fatty acid 

left over after incubation could be removed easily and fairly completely 

from the cell mass so that accurate data about cell growth and lipid 

accumulation could be obtained. Table 6 compares thé growth of A. 

curvatum and accumulation of yeast oil with various monounsaturated 

fatty acids as substrates. The yeast grew well on hexadecenoate and 

octadecenoate, regardless of the position of double bonds. The cis-11-

eicosenoate, gondoic acid, gave poorer growth and less oil accumulation 

than the hexadecenoate and octadecenoates, and the amount of cell mass 

produced on the docosaenoate, erucic acid, was too small to be recovered 

and weighed. 
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Table 5. Fatty acid composition of A. curvatum triglycerides and the sn-2 
position from yeast grown on stearic acid as a carbon source 

16:0 18:0 18:1 18:2 

TG 0.9 48.0 46.1 5.1 

Sn-2 0.2 3.0 87.9 8.9 

The stereospecific analysis of the triglycerides from yeast grown 

on the various monounsaturated fatty acids as carbon sources is shown in 

Table 7. For palmitoleic fcis-9-hexadecenoic) and oleic acids, the 

triglyceride contained about 90% of the substrate fatty acid; however, 

for petroselinic (cis-6-octadecenoic) acid, 84.2% of the acyl groups was 

petroselinate. Oleoyl groups were favored more than palmitoyl or 

petroselinoyl groups on the sn-2 position. Yeast grown on petroselinic 

acid had significantly more palmitoyl groups than those grown on oleic 

or palmitoleic acids, and produced a considerable proportion of oleoyl 

groups in its oil. The yeast grown on oleic acid contained more 

linoleoyl groups in its oil than those grown on palmitoleic or 

petroselenic. 

When gondoic acid was the substrate, only 67.5% was recovered 

unchanged in the yeast triglycerides, and considerable proportions of 

oleoyl, linoleoyl, and palmitoyl groups were produced. Although the 
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Table 6. Cell growth and lipid accumulation with different monounsaturated 
fatty acids as carbon sources 

Lipid-extracted 
DCW® (g/L) 

Triglyceride 
produced 

Total DCW 
(g/L) 

% Oil 

Palmitoleic acid 7.49 8.92 16.41 54.4 

Oleic acid 7.66 8.02 15.68 51.6 

Petroselinic acid 7.07 8.52 15.58 54.4 

Gondoic acid 5.63 3.71 9.34 39.8 

Erucic acid Minute quantity (could not determined) 

®Dry cell weight. 

amounts of oleoyl and gondoyl groups on the sn-2 position were equal, 

oleoyl groups must be favored in the sn-2 position because the total oleoyl 

content is about one-third of that of gondoyl group. 

The small amount of yeast oil produced with erucic acid as substrate 

contained only about 3% erucic acid. Undecylenic acid (10-undecenoic acid) 

did not support yeast growth. 

Growth on polyunsaturated fattv acids 

Although the yeast grew well on mixtures containing substantial 

proportions of polyunsaturated fatty acids when these substrates were 
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Table 7. stereospecific analyses of A. curvatum triglycerides grown on 
different monounsaturated fatty acids as carbon sources 

On palmitoleic acid 

16:0 

Whole 0.5 

Sn-1 1.7 

Sn-2 0.1 

Sn-3 * 

16:1 

89.5 

91.9 

83.4 

93.2 

18:0 

2.8 

3.1 

0.5 

4.8 

18:1 

7.1 

3.1 

15.4 

2.8 

18:2 

0 . 2  

0.2 

0.5 

On oleic acid 

16:0 

Whole 0.8 

Sn-1 2.4 

Sn-2 -

Sn—3 -

18:0 

0.7 

0.6 

1.5 

18:1 

92.2 

91.1 

94.0 

91.5 

18:2 

6.3 

5.9 

6.0 

7.0 

On petroselinic acid 

16:0 

Whole 2.8 

Sn-1 5.9 

Sn-2 3.2 

Sn-3 * 

18:1(66) 

84.2 

82.9 

65.3 

104.4 

18;1(A9) 

10.4 

6.9 

24.0 

0.3 

18:2 

2 . 6  

4.3 

7.6 

Negative value. 
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Table 7. (continued) 

On gondole acid 

16:0 

Whole 4.7 

Sn-1 12.5 

Sn-2 0.2 

Sn-3 1.4 

16:1 18:0 18:1 

0.4 0.8 22.0 

1.2 1.6 21.5 

0.1 45.6 

0.7 * 

18:2 20:1 20:2 

3.7 67.5 0.9 

5.0 57.1 1.0 

7.2 45.6 1.3 

* 99.8 0.4 

isolated from soybean or corn oil, the yeast did not grow well on 

purified linoleic acid or mixtures of purified fatty acids containing 

more than 20% linoleic acid or more than 15% linolenic acid. Oxidation 

seemed to be the major problem, but the addition to the medium of up to 

1500 ppm of alpha-tocopherol or of the unsaponifiables collected from 

corn oil were not effective in producing yeast growth on purified 

substrates rich in polyunsaturated fatty acids. If media made from 

purified polyunsaturated fatty acids were supplemented with 1000 ppm 

butylated hydroxyanisole (BHA), the yeast grew. Evidently, antioxidant 

factors other than tocopherols in the natural fatty acid mixtures were 

necessary to support growth in media rich in polyunsaturated fatty 

acids. Table 8 shows the growth of A. curvatum on various mixtures of 

oleic, linoleic and linolenic acid. With 1000 ppm BHA, the yeast gave 
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Table 8. Cell growth and lipid accumulation with various mixture of oleic, 
linoleic and linolenic acid with 1,000 ppm of BHA as carbon 
sources 

Lipid-extracted 
DCW (g/L) 

Triglyceride 
produced (g/L) 

Total DCW 
(g/L) 

%0il 

Oleic acid 7.10 6.57 13.67 48.1 

0:L® = 2:1 6.93 7.75 14.68 52.8 

0:L = 1:2 8.06 9.88 17.94 55.0 

Linoleic acid 8.13 10.57 18.70 56.3 

Linolenic acid 6.19 8.83 15.02 58.8 

*0:L = oleic:linoleic. 

slightly less growth and lipid accumulation than without BHA, but the 

antioxidant did not change fatty acid composition of the yeast oil. More 

linoleic acid in the medium gave greater dry cell mass, primarily due to 

the increased amount of yeast oil. Linolenic acid gave greater dry cell 

mass than oleic but not as much as linoleic acid. Linolenic acid-grown 

yeast had the greatest oil content among all the fatty acids tested. Table 

9 gives a stereospecific analysis of the triglycerides isolated from the 

yeast grown on linoleic and linolenic acid. The substrate fatty acids 

constituted most of the acyl groups in the yeast oil. Oleoyl and linoleoyl 

groups were favored at sn-2. On linolenic acid substrates, the yeast 
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Table 9. Stereospecific analysis of yeast triglyceride grown on linoleic 
and linolenic acid as carbon sources 

On linoleic acid 

16:0 18:0 18:1 18:2 

TG 0.9 1.5 1.3 96.3 

Sn-1 2.3 1.5 0.7 95.5 

Sn-2 - - 2.2 97.8 

Sn-3 0.4 3.0 1.0 95.6 

On linolenic acid 

16:0 18:0 18:1 18:2 18:3 

TG 1.9 1.6 7.6 0,5 88.3 

Sn-1 3.3 1.5 5.3 - 89.9 

Sn—2 0.8 - 18.7 1.4 79.1 

Sn-3 1.6 3.3 * 0.1 95.9 

*Negative value. 

produced considerable amounts of oleate. 

Utilization of conjugated and oxygenated fatty acids 

Attempts to grow yeast on the fatty acids isolated from tung oil 

were unsuccessful, probably because the fatty acids polymerized rapidly. 
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The yeast grew on tung oil, but at a slower rate than on corn oil. 

Because the substrate was a triglyceride, the lipid accumulation in the 

yeast was difficult to quantify exactly, but microscopic examination 

showed good fat accumulation inside the yeast cells. The dry cell 

weight after lipid extraction was 8.2 g/L, which is almost as good as 

that on corn oil fatty acids. Table 10 shows the fatty acid profile of 

the tung oil substrate, the triglyceride recovered from the benzene 

extract of the yeast and the composition of the sn-2 position of the 

yeast triglyceride. About 50% of the yeast oil was eleostearic acid 

compared with 80.6% in the substrate oil; however the two isomers, 

alpha- fcis-9-.trans-ll.trans-13-) and beta-eleostearic (trans-9,trans-

11.trans-13-octadecatrienoic), were not resolved. The eleostearate 

esterified in the sn-2 position was much less than its percentage in the 

yeast oil. 

V. anthelmintica seed, which contains vernolic acid (12,13-epoxy-

cis-9-octadecenoic acid) was extracted and used as a carbon source in 

the yeast medium. The seed oil allowed moderately good growth and 

yielded 5.2 g/L of dry cell weight after oil extraction. The seed oil 

was composed of 73.8% vernolic acid. Triglycerides from the benzene 

extracts of the yeast contained 44% vernolic acid. 

Castor oil and its chief component, ricinoleic acid (12-hydroxy-

cis-9-octadecenoic acid), were used as carbon sources in yeast media. 

The yeast could grow on both substrates, but the growth with ricinoleic 

acid was much slower than that with castor oil. Ricinoleic acid 

constituted 85.5% of the castor oil, but the triglyceride extracted 
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Table 10. Fatty acid composition of tung oil substrate, the oil from yeast 
grown on tung oil and its sn-2 position 

16:0 16:1 18:0 18:1 18:2 18:3 18:3® 

Tung oil 2.3 - 2.5 6.8 7.2 0.8 80.4 

Yeast oil 6.9 0.8 1.2 23.6 14.7 0.7 52.1 

Sn-2 1.4 1.2 0.1 55.0 32.8 0.4 9.0 

®Eleostearic acid. 

(benzene extract) from the yeast grown on castor oil contained only 29.2%. 

Eleostearic, ricinoleic and vernolic acids have frequently been 

suggested as targets for gene transfer experiments because oils 

containing them have industrial uses and are relatively expensive (18, 

28). These results show that the yeast is able to accumulate 

significant amounts of these acids in its triglyceride, but their 

concentrations in the yeast triglycerides were always less than in their 

substrates, and growth on these carbon sources was less than for 

substrates such as corn oil. These observations suggest a reluctance on 

the part of the yeast to include these acyl groups in its oil depot. Of 

the exotic fatty acids that we have tested (i.e., those that are not 

accumulated when the yeast grows on sugar), petroselinic seems the most 

acceptable to the yeast as a component of its triglycerides. 
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Some application of A. curvatum grown on lipid substrates 

Separation of erucic acid from crambe oil The poor utilization 

of erucic acid by A. curvatum suggested that it might be left unutilized 

and concentrated in the medium when erucic acid-containing oils were 

used as carbon sources by the yeast. Table 11 shows the results when 

crude, pressed crambe oil was used as a carbon source for yeast grown 

for 7 and 14 days. The yeast obviously discriminated against Cgg, C22 

and C24 fatty acids so that there were smaller proportions of these in 

the yeast oil, and more of them accumulated in the residual medium oil. 

However, the incorporation of C20 to C24 fatty acids in the yeast oil 

was not completely avoided, and the proportion of these fatty acids in 

yeast oil increased with incubation time as alternative fatty acids were 

depleted. Thin-layer chromatography showed that most of the residual 

lipid in the medium was free fatty acid. Table 12 shows the amounts of 

fatty acids shorter than C20 and those of fatty acids > 20 in the 

various oil phases from this crambe oil experiment. 

Cholesterol incorporation by A. curvatum There is considerable 

interest in the elimination or reduction of cholesterol in animal fats. 

Choi (29) reported that the major sterols in A. curvatum grown on a 

sugar-substrate media were sitosterol and stigmasterol. No cholesterol 

was found. This suggests that, if A. curvatum were grown on animal fats 

as a carbon source, the fatty acids might be deposited in the yeast and 

the cholesterol accumulated in the residual medium fat. Bati et al.(26) 

reported that cholesterol was discriminated against when Candida 

lipolvtica was grown on substrates of lard and tallow, but some 
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Table 11. Fatty acid composition of oil 
crambe oil as a carbon source 

phases from experiments with 

Substrate 
crambe oil 

Leftover 
oil phase 

Yeast oil 
(benzene extract) 

16:0 2.8 

7 day 

1.0 

14 day 

0.2 

7 day 

4.7 

14 day 

4.4 

16:1 0.4 - - 0.8 0.5 

18:0 1.2 0.9 0.6 1.6 1.5 

18:1 22.0 15.1 6.0 34.1 37.2 

18:2 11.9 5.8 1.7 25.8 23.8 

18:3 6.9 2.7 1.6 13.7 9.7 

20:1 5.2 5.3 4.3 4.5 4.5 

22:0 1.2 2.1 3.6 - 0.2 

22:1 46.9 64.7 78.8 14.7 18.3 

22:1 - 1.6 2.4 3.8 - -

>20:1 54.9 74.5 89.9 19.2 23.0 

cholesterol was found in the yeast oil. It is not certain, however, 

that all the external fat was removed in their experiments. 

We grew A. curvatum on a synthetic mixture of oleic acid containing 
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Table 12. The amounts of fatty acids in the oil phases from experiment 
with crambe oil as a carbon source 

Patty acids In substrate In leftover In yeast oil (g/L) 
crambe oil (g/L) oil phase (g/L) (benzene extract) 

7 day 14 day 7 day 14 day 

<20:1 8.12 2.93 0.80 1.87 4.13 

>20:1 9.88 8.55 7.09 0.44 1.23 

cholesterol. The yeast was washed with ethanol until no oleic acid was 

found in the washings. This required eight washings with ethanol. The 

residual triglycerides in the yeast were extracted with hexane and 

benzene as usual. Of 2234 ppm of cholesterol in the medium, the yeast 

triglyceride contained only 45 ppm. The concentration of cholesterol in 

the residual substrate was 4692 ppm. However, a considerable portion of 

the yeast triglyceride was extracted along with the free fatty acid 

during the eight washings. After first and second washings with 

ethanol, the yeast oil contained 844 ppm and 168 ppm of cholesterol, 

respectively. A. curvatum discriminates against cholesterol in its 

medium effectively, but it will be necessary to find better ways of 

separating external and internal fat to make this a practical method of 

removing cholesterol from animal fats. 
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PART II. 

TRIACYLGLYCEROL ASSEMBLY 

BY APIOTRICHUM CURVATUM 

FROM BINARY MIXTURES OF FATTY ACIDS 
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ABSTRACT 

The oleaginous yeast ftpiotrichum curvatum was grown on various 

binary mixtures of palmitic, stearic, oleic and linoleic acids as carbon 

sources. When oleic-linoleic acid mixtures of various ratios were used 

as substrates, the yeast grew well, and triglycerides with a wide range 

of acyl group compositions were obtained. Oleic acid was favored over 

linoleic acid at the sn-2-position of the glycerol. When the 

percentages of oleate and linoleate at the three glycerol positions were 

plotted versus the percent of the acyl groups in the whole yeast, linear 

relations were observed for most of the range, and the sum of the 

intercepts and slopes of the three lines of each fatty acids was 0 and 

3, respectively. A simple mathematical model of triglyceride assembly 

was proposed to explain these observations. With more palmitic and 

stearic acids in the medium, the yeast accumulated less oil. 

Incorporation of stearic acid into the triglyceride also was very 

limited. When mixtures of palmitic-oleic and palmitic-linoleic acids 

were used as substrates, the yeast oils of cultures grown on the ratios 

of 50:50 and 25:75 had similar acyl group profiles. Possibly the yeast 

had more limited access to solid fatty acid substrates than to liquid 

fatty acids. 
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INTRODUCTION 

Triglyceride structure is considered to be associated with the 

stability (1) and nutritional value (2) as well as the physical 

properties (3) of fats and oils. Stereospecific analysis of animal (3) 

and plant (4) triglycerides revealed that the distribution of their acyl 

groups is not random. Since Christie and Moore (5) first suggested 

linear relations in the plots of percentages of fatty acids on the 

glycerol positions vs. the percentage of the fatty acids in the whole 

triglyceride, such linear relations have been reported in soybean (6, 

7), oat (7) and peanut (8, 9) oils. However, no such studies have been 

done with yeast oils. 

When the oleaginous yeast Apiotrichum curvatum was grown on binary 

mixtures of oleic and linoleic acids as carbon sources, the yeast 

yielded triglycerides with a wide range of acyl group composition. 

These triglycerides provided a good model to study the characteristics 

of fatty acyl distribution by the yeast. 

In a previous paper, we reported the effects of different pure free 

fatty acids and neutral oils on growth and lipid accumulation by the 

yeast Apiotrichum curvatum ATCC 20509, and on the distribution of fatty 

acyl groups in its triglycerides. The effect of using binary mixtures 

of the four major fatty acids of yeast oil as substrate is reported in 

the present paper. 
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MATERIALS AND METHODS 

A. curvatum was maintained as refrigerated slant cultures on yeast 

extract/dextrose/peptone/agar (1/2/2/1.5 %w/w), transferred monthly. 

The constituents of the basal medium were (g/L): KHgPO^, 2.5; 

MgSO^'VHgO, 1.0; asparagine, 0.8; CaCl2.2H20, 0.2; NaCl, 0.06; 

FeClg.eHgO, 0.02; MnSO^.HgO, 0.002; ZnSO^'THjO, 0.001; thiamine-HCl, 

0.001; CuSO^'5H20, 0.0001 (10). The basal medium was adjusted to pH 5.5 

and supplemented with 18 g/L of substrate lipid. Pure fatty acids were 

purchased from Sigma Chemical Co. (St. Louis, MO). 

A seed culture was prepared by inoculating about 2% of the yeast 

washed from a slant culture into 100 ml of heat-sterilized basal medium 

with the fatty acids isolated from corn oil as a carbon source. The 

culture was grown in 250-ml flasks in a Labline orbital shaker (Melrose 

Park, IL) at 32°C and 180 rpm. The seed culture was in logarithmic 

growth after about 2 days, and its optical density at 440 nm was 

normally 9 to 10. One milliliter of seed culture was used as an 

inoculum for 100 ml of medium containing the substrate lipid to be 

tested. The test cultures were grown for 7 days under the same 

conditions used for the seed culture. 

Residual substrate was separated from the culture with a separatory 

funnel in the experiments with oleic-linoleic acid mixtures. Oil 

extraction from the yeast was according to Hammond et al. (11), which 

involved extraction in sequence with, ethanol, hexane and benzene. Fatty 

acid mixtures having palmitic and stearic acid were emulsified into the 
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medium with 5 g/L gum acacia. After heat-sterilization of the mixture 

of gum acacia, fatty acid and basal medium in a blender jar, emulsion 

was made in situ by blending at high speed for 1 min, and the emulsified 

medium was transferred aseptically into the culture flasks. When 

emulsified substrates were used, agitation was decreased to 140 rpm to 

minimize destabilization of the emulsion. The yeast cell mass could not 

be separated completely from the emulsified fatty acid by 

centrifugation, so after removal of as much of the cell mass as possible 

by centrifugation, the supernatant was evaporated in a rotary 

evaporator, and the residue was pooled with the cell mass recovered by 

centrifugation. Extraction of lipid in this residue was accomplished as 

before. 

The amount of triglyceride in yeast oil was determined by thin-

layer chromatography (TLC). Aliguots of the ethanol extract and pooled 

hexane and benzene extracts were applied to TLC plates 1.0 mm thick. 

The plates were developed in hexane/ether/acetic acid (50/50/1, v/v/v), 

and bands were visualized by spraying with 0.2% dichlorofluorescein in 

ethanol and viewed under ultraviolet light. Triglycerides were eluted 

and the residue was weighed after evaporation of the ether under 

nitrogen. For further lipid analysis, triglycerides were separated from 

the pooled hexane and benzene extracts by the same TLC method described 

above. 

Stereospecific analysis was done according to Fatemi and Hammond 

(6). For fatty acid analysis, glycerides were transesterified by the 

method of Frey and Hammond (12), and the methyl esters were separated on 
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a Varian Model 3700 Gas Chromatograph equipped with a 1.8 M x 3.3 mm 

column of 10% SP-2330 on Chromosorb WAW and a flame ionization detector. 

All reported results are the average of two replicate measurements 

except those of stereospecific analyses, which represent a single 

measurement. However, the errors for stereospecific analyses were less 

than 7% in determining the whole, sn-1 and sn-2 compositions. 
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RESULTS AND DISCUSSION 

Structure of triglycerides from A. curvatum grown on oleic-linoleic acid 

mixtures 

Table 1 shows the fatty acid composition and stereospecific 

distribution of fatty acids in triglyceride from A. curvatum grown on 

pure oleic and linoleic acids and on mixtures of oleic and linoleic 

acids as carbon sources. Saturated acyl groups in the yeast 

triglyceride was <3% in all instances. Figure 1 shows the percentage of 

oleate and linoleate in the yeast triglycerides plotted versus the 

percentage of the fatty acids in the substrate used. The percentage of 

linoleate in triglyceride from the yeast grown on pure oleic acid as a 

substrate was plotted vs the zero percent in the substrate for the line 

of linoleic, and vice versa for the oleic acid line in the Figure 1. 

Different intercepts were observed from the lines of the two fatty acids 

possibly because of the desaturation of oleate to linoleate by the yeast 

or possibly because linoleate is accumulated slightly better than 

oleate. Almost the same slopes (0.892 and 0.900 for oleic and linoleic 

acids, respectively) were noted from the plots. Correlation 

coefficients of the plots were 0.9988 and 0.9984 for oleic and linoleic 

acids, respectively. 

The percentage of each fatty acid on the three glycerol positions 

was plotted vs the percentage of the acyl groups in the whole yeast 

triglyceride in Figures 2 and 3. The percentages of oleate and 

linoleate on the sn-1-, sn-2- and sn-3-positions were linearly related 
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Table 1. Stereospecific analysis of triglycerides from A. curvatum grown 
on different ratios of oleic:linoleic acid 

Fatty acid composition 

16:0 18:0 18:1 18:2 

0:L* = 100:0 

0:L = 94:6 

0:L = 85:15 

0:L = 76:24 

0;L = 67:33 

0:L = 45:55 

TG" 

Sn-1 
Sn-2 
Sn-3 

TG 
Sn-1 
Sn-2 
Sn-3 

TG 
Sn-1 
Sn-2 
Sn-3 

TG 
Sn-1 
Sn-2 
Sn-3 

TG 
Sn-1 
Sn-2 
Sn-3 

TG 
Sn-1 
Sn-2 
Sn-3 

0 . 8  
2.4 

3.4 

1.3 
3.4 
0.5 

1.4 
2.9 

1.3 

1.1 
2.0 

1.3 

0.8 
1.5 
0 . 2  
0.7 

0.7 
0.6 

1.5 

2 . 6  
N.A® 

N.A 

1.0 
1.4 
0 . 2  
1.4 

1.1 
1.4 

1.9 

1.3 
1.2 

2.7 

0 . 8  
0.9 
0.1 
1.4 

92.2 
91.1 
93.5 
91.6 

83.5 

92.9 

76.9 
66.0 
8 6 . 6  
78.1 

65.7 
56.9 
8 0 . 8  
59.4 

57.1 
50.3 
73.0 
48.0 

39.6 
30.9 
56.1 
31.8 

6.3 
5.9 
6.0 
7.0 

10.5 

7.1 

20 .8  
29.3 
12.6 
20.5 

31.9 
38.9 
19.2 
37.6 

40.5 
46.6 
27.0 
47.9 

58.8 
66.7 
43.5 
6 6 . 2  

*01eic : linoleic. 

''Triglyceride. 

®Not available. 
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0;L = 33:67 TG 
Sn-1 
Sn-2 
Sn—3 

0 . 8  
1 . 6  

0 . 8  

1 . 0  
0.9 

2.1 

29,0 
2 2 . 8  
43.8 
20.4 

69.2 
74.8 
56.2 
76.6 

0;L = 15:85 TG 
Sn-1 
Sn-2 
Sn-3 

1.3 
3.6 
0.5 

- 0 . 2  

1.3 
2.1 
0.3 
1.5 

13.8 
8.7 
27.6 
5.1 

83.6 
85.7 
71.6 
93.5 

0:L = 10:90 TG 
Sn-1 
Sn-2 
Sn-3 

1.2 
3.6 

1.6 
2.4 

2.4 

9.0 
7.5 
14.7 
4.8 

88.2  
86.5 
85.3 
92.8 

0;L = 0:100 TG 
Sn-1 
Sn-2 
Sn—3 

0.9 
2.3 

0.4 

1.5 
1.5 

3.0 

1.3 
0.7 
2 . 2  
1 . 0  

96.3 
95.5 
97.8 
95.6 

to the total percentage of the fatty acids in triglyceride for a certain 

range of each fatty acid: oleic, approximately 15-70%; linoleic, 

approximately 25-80%. The three lines in Figures 2 and 3 represent plots 

from five different triglycerides in the range. The slopes, intercepts and 

correlation coefficients are listed in Table 2. 

In the triglycerides from the yeast grown on oleic-linoleic 

mixtures, oleate was favored at the sn-2-position compared with 

linoleate. The same trend was reported in oat oil. On the other hand, 

linoleate was favored over oleate in soybean and corn oil (7). The sign 
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O—O : linoleic acid 

# # ; oleic acid 

<D 
T3 
L_ 
0) 
o 
> 
en 

Q) 
£ 

c 

100 

% in the sub strate 

Figure 1. The percentage of fatty acids in the yeast triglycerides vs 
the percentage of those in the substrates 
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100 

Q. 

• ; sn-1-position 

A : sn-2-position 

o ; sn-3-position 

A 

O 

% oleate in total triglyceride 

Figure 2. The percentage of oleic acid on the sn-1-, sn-2-, and sn-3-
positions of glycerol vs the percentage of oleic acid in the 
whole triglyceride from the yeast A. curvatum grown on oleic-
linoleic mixtures (•: on a palmitic-oleic mixture) 
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Figure 3. The percentage of linoleic acid on the sn-1-, sn-2-, and 
sn-3-positions of glycerol vs the percentage of linoleic acid 
in the whole triglyceride from the yeast A. curvatum grown on 
oleic-linoleic mixtures (•; on a palmitic-linoleic mixture) 
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Table 2. Linear regression of the percentage of fatty acids at the 3 
positions of glycerol vs the percentage in the whole 
triglyceride® 

Fatty acid 

Oleic acid 

Position 

sn-1 
sn-2 
sn-3 
sum 

Intercept 

-4.76 
14.05 
-9.30 
-0.01 

Slope 

0.94 
1.03 
1.03 
3.00 

0.9986 
0.9992 
0.9991 

Linoleic acid sn-1 
sn-2 
sn-3 
sum 

10.02 
•14.04 
4.02 
0 .00  

0.93 
1.01 
1.06 
3.00 

0.9966 
0.9984 
0.9994 

®Ranges used for this linear regression were 13.8 - 65.7% and 
31.9 - 83.6% in the whole triglyceride for oleic and linoleic acids, 
respectively. 

^Correlation coefficient. 

of the intercepts (positive or negative) indicates that the placement 

of acyl group on the position is favored or resisted, respectively. 

Slopes in Table 2 greater than 1 indicate that as the amount of an acyl 

group in the whole oil increases, there is a tendency to place more of 

it on that particular glycerol position than is present in the whole 

oil. A slope less than 1 indicates less is placed on a glycerol 

position than is found in the whole oil. The pattern of the plots 
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varied with the components of the mixtures used as substrates. In 

Figures 2 and 3, the points shown in the squares were from triglycerides 

in cultures that were grown on palmitic-oleic and palmitic-linoleic 

mixtures, respectively. In both instances the palmitate, which is 

accumulated mostly on the sn-1 and sn-3 positions, caused an increase in 

the unsaturate on the sn-2 position. 

Theoretical treatment of alvceride distribution 

Figures 2 and 3 reveal that a plot of the amounts of oleate and 

linoleate on the three positions of glycerol versus the amount of these 

acyl groups in the whole oil were linear through the middle of their 

range. Such linear relations were first suggested by Christie and 

Moore(5), and they have been demonstrated for varieties of soybean (6,7) 

and its wild relative Glycine soia as well as oat and its wild relative 

Avena sterilis (7). Fatemi and Hammond (6) made the observation that if 

the slopes and intercepts of such plots were determined, that for a 

particular acyl group, the slopes for the three positions totaled 3, and 

the intercepts 0. This is also true for the slopes and intercepts of 

Figures 2 and 3. The use of plant varieties for such plots limits the 

range of the data to the range of fatty acid compositions that are 

available. Pan and Hammond (7) pointed out that although these plots 

were linear over the range that could be observed, it was impossible for 

them to be linear over their entire range and that the lines must bend 

toward zero and 100% at their extremes. The data obtained with A. 

curvatum has made it possible to examine a much longer range and verify 
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this prediction. 

Many of the observations about plots like those of Figures 2 and 3 

can be explained by a simple mathematical model of triglyceride 

synthesis. Assume that the fatty acids being assigned to the three 

positions of glycerol are drawn from a single pool and that the pool is 

in a steady state so that fatty acids are added at the same rate they 

are withdrawn. Let the fatty acids be designated a,b,c....n and the 

steady state concentration of the fatty acids in the pool be A,B,C....N. 

Assume that the amount of each fatty acid attached to each glycerol 

position is governed by a rate constant, k, where k(lA) is the rate 

constant for placing fatty acid a on the sn-1 position, k(2B) is the 

rate constant at which fatty acid b is placed on position the sn-2 

position, etc. Assume that the rate of acyl distribution is governed by 

the rate constant and the steady state concentration so that a(l), the 

observed proportion of fatty acid a on sn-1, 

a(l) = k(lA)A/(k(lA)A + k(lB)B + k(lC)C...k(lN)N] 

then, 

k(lA)A + k(lB)B + k(lC)C.-. . .k(lN)N = 1 

because all the acyl groups on a glycerol position, in this instance the 

sn-1 position, fill it completely and total 1. 

Thus, 

a(l) = k(lA)A 

We can write a similar equation for each fatty acid and each position of 

the glycerol, but there is no way to observe the concentration in the 

pool or the k's. We can conclude that 
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a(l)/a(2) = k(lA)/k(2A) 

If we let a(t) be the proportion of a in the whole triglyceride, 

3a(t) = a(l) + a(2) + a(3) 

and the slope of a line with an ordinate of a(l) and an abscissa a(t) is 

a(l)/a(t) = 3a(l)/[a(l) + a(2) + a(3)] 

= 3k(lA)A/[k(lA)A + k(2A)A + k(3A)A] 

= 3k(lA)/[k(lA) + k(2A) + k(3A)] 

Thus, the slope of the line will be constant, and if we sum the three 

slopes for a on the sn-1, sn-2 and sn-3 positions 

sum = 3[k(lA) + k{2A) + k(3A)]/[k(lA) + k(2A) + k(3A)] = 3 

Thus, this simple model accounts for the linear relation observed in A. 

curvatum and plant varieties and for the slopes of the three lines for 

each acyl group adding to 3. The model assumes that the rate of 

assignment is never influenced by the amount of glycerol, glycerol 

phosphate, monoglyceride or diglyceride that also are presumed 

substrates for the reactions. This would be true if these substrates 

always were present in adequate or steady state concentrations. It also 

assumes that mono- and di-glyceride are never final products. 

But this simple model fails in that the plots should all have 

intercepts of zero, and they obviously do not. The presence of these 

intercepts also requires the lines to deviate from linearity at small 

values for the concentration of the acyl group in the oil. The presence 

of these intercepts and the fact that they sum approximately to zero 

suggests that there must be a mechanism that effectively takes a fixed 

amount of an acyl group from glycerol positions with negative intercepts 
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and adds them to those with positive intercepts. The amount of this 

transfer is equal to the sum of the positive and negative intercepts. 

The amount of such a transfer evidently is not affected by the amount of 

the acyl group present in the whole oil. This insensitivity to acyl 

concentration cannot be true when the amount to be transferred is less 

than the amount of an acyl group present. This may explain why this 

model breaks down at small concentrations of an acyl group in the oil so 

that the model applies only to the middle of the observed lines. The 

presence of intercepts suggests that there may be two pathways leading 

to triglycerides, one accounting for slopes and one for intercepts. 

Obviously the actual mechanisms by which various acyl groups end up 

on various positions of glycerol may be much more complex than the 

simple model we have proposed. If the net effect of a complex pathway 

is such that rates are limited and the final distribution is controlled 

by the factors assumed in the model, then the model may correctly 

predict the observed distribution. 

Effect of substrate mixtures of fattv acid on the composition of veast 

triglycerides 

The other binary mixtures of fatty acids were not capable of being 

studied over the wide range used for oleic-linoleic mixtures, because 

the acyl group composition of A. curvatum triglycerides varied over a 

relatively narrow range, regardless of the ratios of fatty acids in the 

medium. Also the emulsions of solid saturated high-melting acids used 

as substrates made it difficult to isolate the yeast triglyceride for 
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•tereoGpecific analysis. Table 3 shows the fatty acid composition of 

triglycerides isolated from A. curvatum when it was grown on various 

binary combinations of fatty acids as carbon sources. When large 

proportions of stearic acid were present in the medium, the amount of 

accumulated yeast oil decreased (data not shown). This agrees with our 

previous observation (Part I in this dissertation). Less than 10% 

stearic acid was observed in the yeast triglycerides even from a medium 

with 75% stearic acid. Seemingly, the yeast reluctantly used and 

incorporated stearic acid into its triglycerides. In a study using 

cell-free extracts and spheroplasts, Holdsworth and Ratledge (13) 

reported that the activity of fatty acyl coenzyme A (CoA) synthetase in 

A. curvatum was some 6- to 8-fold lower with stearate than with 

palmitate, oleate and linoleate. The acyl CoAs that are produced in 

this reaction can be used either for B-oxidation or for synthesis of 

cellular lipids (14). The poor substrate activity of this enzyme with 

stearate might account for the very limited utilization of stearate and 

its low incorporation into the triglyceride. In the stearic-oleic and 

palmitic-oleic mixtures, the presence of saturated acids seemed to 

significantly decrease the linoleate found in the yeast triglyceride 

compared with that found with oleate alone. 

Holdsworth and Ratledge reported that the activities of fatty acyl 

CoA synthetase for palmitic and linoleic acids were similar. However, 

as the proportion of palmitic acid increased in the medium, the yeast 

accumulated less triglyceride. The yeast seemed to prefer palmitate 

over stearate since the yeast oil resembled that from palmitic more than 
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Table 3. Fatty acid composition of triglyceride from A. curvatum grown on 
various combinations of saturated and unsaturated fatty acids as 
carbon sources. The compositions observed for single fatty acids 
used in the mixtures are included for comparison 

Carbon sources 16:0 16:1 18:0 18:1 18:2 

P®;S^ = 75:25 60.7 11.6 1.3 23.9 2.4 
50:50 56.5 8.7 2.7 28.3 3.8 
25:75 50.8 4.5 6.5 33.6 4.5 

P:0® = 75:25 39.9 3.1 1.6 50.7 4.8 
50:50 17.7 - 1.5 78.3 2.5 
25:75 16.9 • - 1.6 78.8 2.7 

P:L^ = 75:25 25.3 1.7 1.9 6.3 64.8 
50:50 15.0 - 1.7 2.3 81.1 
25:75 14.9 - 2.0 4.0 79.1 

S:0 = 75:25 0.9 - 9.7 86.4 3.1 
50:50 0.5 - 2.5 95.1 1.2 
25:75 0.5 - 3.1 94.7 1.7 

S:L = 75:25 - - 6.0 2.1 91.9 
50:50 0.5 - 5.7 1.5 92.3 
25:75 0.5 - 3.7 1.3 94.5 

Palmitic 100% 61.3 13.9 0.8 21.5 2.6 
Stearic 100% 0.9 - 48.0 46.1 5.1 
Oleic 100% 0.8 - 0.7 92.2 6.3 
Linoleic 100% 0.9 - 1.5 1.3 96.3 

^Palmitic acid, 

''stearic acid. 

®01eic acid. 

^Linoleic acid. 
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that from stearic acid when the yeast was grown on palmitic-stearic 

mixtures. When the substrates were 50:50 or 25:75 palmitic-oleic acid 

mixtures, the acyl composition of the yeast oil was similar regardless 

of the proportion of palmitic acid in the substrate oil. Similar 

results were obtained for palmitic-linoleic acid mixtures. It is 

suggestive that 15 - 18% palmitic acid found in these oils corresponded 

to the solubility of palmitic acid in oleic acid at 33°C, namely 15.7% 

(15). Probably the access of the yeast to solid lipid substrate is less 

than for liquid fatty acids. When the proportion of palmitate in 

palmitic-oleic and palmitic-linoleic acid mixtures was 75%, greater 

amounts of palmitate were found in the yeast oil. 
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GENERAL SUMMARY 

A. curvatum was grown on various lipids as carbon sources. When 

commercial animal and vegetable oils were used as substrate, the yeast 

grew well, and the yeast triglyceride had a fatty acid profile similar 

to that of the substrate oil, but the acyl groups of the substrate oil 

were redistributed according to the specificity of the yeast's enzymes 

for triglyceride biosynthesis. The yeast favored placing oleoyl groups 

on sn-2, and saturated acyl groups on sn-1 and sn-3 positions. The 

yeast seemed to utilize corn oil and lactose equally well in a mixed-

substrate medium. 

Saturated short-chain free fatty acids less than 14 carbons were 

not utilized in A. curvatum's oil depots; however, the yeast grew on 

glycerol tributyrate and tricaprate as a carbon source. With a 

tricaprin substrate some capryl groups were detected in the yeast 

triglyceride, but butyryl groups were not deposited when tributyrin was 

the substrate. Laurie acid did not support the growth of the yeast. The 

yeast showed very limited growth on myristic acid as a carbon source but 

deposited some triglyceride composed of more than 90% myristic acid. 

An emulsion of palmitic acid was well utilized by A. curvatum. On 

this substrate the yeast oil contained large amounts of palmitate on the 

sn-1 and -3 positions, and 11 to 16% at the sn-2-position. About 20% 

oleic acid was produced from palmitic acid presumably through elongation 

and desaturation. When binary mixtures of palmitic-oleic and palmitic-

linoleic acids were used as carbon sources, the yeast accumulated less 

oil with greater proportions of palmitic acid in the substrate. Also, 
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the triglycerides from yeast grown on binary mixtures containing 25 and 

50% palmitic acid contained similar acyl compositions. 

Stearic acid gave very limited growth of A. curvatum. The 

substrate stearic acid was extensively desaturated to oleic and linoleic 

acids before being deposited in the yeast triglyceride. Much less 

saturated acid was found in the yeast triglyceride and its sn-2-position 

than when palmitic acid was the substrate. When binary mixtures 

containing up to 75% stearic acid were used as carbon sources, the 

stearic acid had little effect on the acyl composition of the yeast 

triglycerides. Arachidic acid did not support the yeast growth. 

A. curvatum grew well and accumulated over 50% triglyceride on 

hexadecenoate and octadecenoate, regardless of the position of the 

double bond. Limited grow was observed when the cis-ll-eicosenoate. 

gondoic acid, was used as a carbon source; almost no growth was observed 

with erucic acid as a substrate. For palmitoleic and oleic acids, the 

yeast triglyceride contained about 90% of the substrate fatty acid; for 

Petroselinic acid, 84.2% of acyl groups of the yeast triglyceride was 

petroselinate. Oleoyl groups were favored more than palmitoyl or 

petroselinoyl groups on the sn-2-position. When gondoic acid was the 

substrate, only 67.5% was recovered unchanged in the yeast triglyceride. 

Undecylenic acid (10-undecenoic acid) did not support yeast growth. 

Although A. curvatum grew well on fatty acid mixtures isolated from 

soybean or corn oil, the yeast did not grow on mixtures of purified 

fatty acids containing more than 20% linoleic acid or more than 15% 

linolenic acid. However, supplementation with 1000 ppm butylated 
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hydroxyanisole (BHA) allowed polyunsaturated fatty acids to support 

yeast growth and oil accumulation. Polyunsaturated fatty acids yielded 

more yeast biomass and lipid content than did oleic acid. When oleic-

linoleic mixtures in various combinations were used as carbon sources, 

the yeast grew well, and produced triglycerides with an extensive range 

of acyl composition. The yeast showed a definite preference in 

incorporating linoleate over oleate into its triglycerides; however, 

oleate was favored at the sn-2-position. Yeast triglycerides produced 

on oleic-linoleic mixtures contained less than 3% saturates. When 

oleic-linoleic acid mixtures were used as carbon sources, linear 

relations were observed in the plots of percentages of acyl groups at 

the three glycerol positions versus those of whole yeast triglyceride. 

These plots were similar to those reported earlier in vegetable oils. A 

simple mathematical model of triglyceride biosynthesis was proposed to 

account for these observations. The theory suggests a mechanism which 

can take and add acyl groups from and to glycerol positions. It also 

suggests that there may be two pathways leading to triglycerides. 

When crambe oil was used as a carbon source, A. curvatum 

discriminated against the incorporation of C20, C22 and fatty acids, 

and these were accumulated in the residual medium oil. However, the 

incorporation of these fatty acids was not completely avoided. The 

yeast also discriminated against the deposition of cholesterol from its 

medium into its fat depots, but it is difficult to define internal and 

external cholesterol exactly. 

The ability of A. curvatum to tolerate and metabolize some unusual 
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fatty acids of economical importance was tested. The yeast grew on tung 

oil, castor oil and oil extracted from Vernonia anthelmintica seed, and 

deposited eleostearate, ricinoleate and vernolate in its triglyceride, 

respectively. In all three instances, the yeast triglyceride contained 

significantly less of these fatty acids than was found in the substrate 

oils. 

Following are the major accomplishments of this study; 

1. Demonstrated that A. curvatum can and will desaturate and elongate 

substrates under some conditions, and not simply deposit the same 

fatty acids as in the medium. 

2. Demonstrated only palmitic, oleic, linoleic, linolenic and other 

unsaturated fatty acids with 16 and 18 carbons were well used. This 

suggests that it will not be easy to transfer short-chain acyl 

groups across species boundaries. But, ricinoleate, vernolate, 

eleostearate, petroselinate biosynthesis should be capable of 

transfer across species boundaries because these acyl groups were 

well used by the A. curvatum which does not synthesize them. 

3. Found linear segments in the plots of percentages of acyl groups 

at the three glycerol positions versus those of whole yeast 

triglyceride when oleic-linoleic acid mixtures were used as carbon 

sources. These were similar to those reported in vegetable oil 

varieties. A simple mathematical model of triglyceride assembly 

was proposed to explain these observations. 

4. Determined that it may be possible to use A. curvatum to remove the 

cholesterol in animal fats by letting the yeast grow on animal fats 
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and recovering the triglyceride deposited in the yeast. 

5. Determined that it may be possible to concentrate the erucic acid in 

rapeseed and crambe oils by letting the yeast preferentially 

accumulate the 16- and 18-carbon acyl groups in the oil. 
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